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ABSTRACT

Bernt Michael Holmboe (1795–1850) was a teacher at Christiania Kathedralskole in
Norway, from 1818 till 1826. After that he was lecturer at the University of Christiania until
1834, when he was appointed professor in pure mathematics, a position he held until his death
in 1850. Holmboe wrote textbooks in arithmetic, geometry, stereometry and trigonometry for
the learned schools in Norway, and one textbook in higher mathematics, and some of them
came in several editions. This paper will focus on the first three editions of the textbook in
arithmetic, and the way he dealt with the rigour in mathematical analysis.

In the first half of the 19th century there was a growing demand for rigour in the foundations
and methods of mathematical analysis, and this led to a thorough reconceptualisation of
the foundations of analysis. Niels Henrik Abel (1802–1829) complained in a letter to
Christopher Hansteen (1784–1873) in 1826 that mathematical analysis totally lacked any
plan and system, and that very few theorems in the higher analysis had been proved with
convincing rigour.

The teaching of mathematics was an important motivation for this rigourisation, and I
will try to demonstrate that the textbooks of Holmboe reflected the contemporary development
in mathematical analysis.

1 Introduction
The 19th century was an important century in the development of the modern number
concept. After the introduction of new methods like analytic geometry, differential and
integral calculus, and algebraic transformation of equations in the 17th century, the
18th century gave the world influential results by the use of these methods. Calculations
with negative numbers became unproblematic in this century, and we also saw the start
of definitions of what later developed into what we now know as irrational numbers.
What characterized the 19th century was the demand for rigour with the basis of the
methods and fundamental concepts. From the beginning of the century the concept
of number was thoroughly reinvestigated. The demand for purity in methodology did
not allow the use of geometrical or purely intuitive arguments as basis of the number
concepts, and the development led finally to the definition of the real numbers in 1872 by
Richard Dedekind (1831–1916) and other equivalent definitions by mathematicians
like Cantor, Weierstrass, Meré etc. There were two mathematicians who made important
contributions in the definition of irrational numbers in the beginning of the 19th century,
namely Bernard Bolzano (1781–1848) and Martin Ohm (1792–1872). (Gericke
1996)



The kingdom Denmark/Norway introduced a new school reform around the year
1800 which in many ways strengthened the position of the discipline of mathematics, and
from now on may we talk about proper teaching in mathematics in the higher education
(Piene 1937). There was much work done in the last decades of the 18th century to
reintroduce mathematics as a subject in school.

The motivation and background for my research is to make an analysis of the
development of mathematics education – and the didactical debate – in the first half of
the 19th century in Norway, in view of the development of mathematical analysis, and
to throw some light on Bernt Michael Holmboe’s significance.

This paper is based on an oral presentation given at the ESU–6 conference in
Vienna. It is part of an ongoing PhD project about Bernt Michael Holmboe and his
textbooks in mathematics, and it is work in progress.

1.1 Bernt Michael Holmboe

Bernt Michael Holmboe was born on the 23rd of March 1795 in Vang in Valdres, centrally
situated in Southern Norway, and he died on the 28th of March 1850, at the age of 55
years and 5 days. Holmboe was a teacher at Christiania Kathedralskole from 1818 till
1826, and after that he was lecturer at the University of Christiania until 1834, when
he was appointed professor in mathematics, a position he had until his untimely death.
Holmboe’s home burnt down shortly after his death, and some of his letters and works
were lost, in addition to some of Abel’s letters and works. (Bjerknes 1925: 56,79)

Among Holmboe’s students we find great mathematicians like Niels Henrik
Abel, Ole Jacob Broch and Carl Anton Bjerknes. Holmboe proclaimed that in
no other subject did novices complain more than in mathematics (Piene 1937), and his
aim was to make the students familiar with mathematical signs before a more methodical
study. He further stated that unless pupils engaged in «uninterrupted practice»1 even
persons with several years of education would find that mathematics is «something of a
mind consuming and boring matter».2 The lecture notes of Carl Anton Bjerknes shows,
however, that Holmboe’s teaching was characterized by pre-abelian times, in spite of his
knowledge of Abel and his works (Bjerknes 1925).

Holmboe wrote in a letter to the then 24 years old Carl Anton Bjerknes (Holm-
boe 1849) that he is inspired by the great French mathematician Joseph-Louis La-
grange (1736–1813). Bjerknes had asked Holmboe to advise him about studies in
mathematics, and Holmboe wrote «The best I have to state in this respect is to inform
you about some notes from Lagrange and some rules and remarks by him regarding the
study of mathematics, which I found in Lindemanns and Bohnebergers Zeitschrift für
Astronomie about 30 years ago . . . Those who really want, should read Euler, because in
his works all is clear, well said, well calculated, because there is an abundance of good
examples, and because one should always study the sources».3

1«idelig øvelse»
2«noget åndsfortærende og kjedsommelig tøi»
3«Som det bedste jeg her i denne Henseende veed at anføre, vil jeg meddelle nogle Notiser om

Lagrange og en Deel Regler og Bemærkninger av ham angaaende Mathematikens Studium, hvilke jeg
for omtrent 30 Aar siden fandt i Lindmann’s (sic!) og Bohnebergers Zeitschrift für Astronomie . . . De
som virkelig vil, bør lese Euler, fordi i hans skrifter alt er klart, godt sagt, godt regnet, fordi de vrimler
av gode eksempler og fordi man altid bør studere kildene.»



1.2 Holmboe’s textbooks

These are the textbooks that Holmboe wrote, and I will in this paper focus on the three
first editions of the Arithmetic (Holmboe 1825, 1844, 1850), the three editions that came
out in Holmboe’s lifetime.

Title Edition Edited by Publisher

Lærebog i Mathematiken.
Første Deel, Inneholdende Indledn-
ing til Mathematiken samt Begynd-
elsesgrundene til Arithmetiken

1825 Jacob Lehmann
1844 J. Lehmanns Enke
1850 J. Chr. Abelsted
1855 R. Hviids Enke
1860 R. Hviids Enke

Lærebog i Mathematiken.
Anden Deel, Inneholdende Begynd-
elsesgrundene til Geometrien

1827 Jacob Lehmann
1833 Jacob C. Abelsted
1851 Jens Odén R. Hviids Enke
1857 Jens Odén J. W. Cappelen

Stereometrie 1833 C. L. Rosbaum
1859 C. A. Bjerknes J. Chr. Abelsted

Plan og sphærisk Trigonometrie 1834 C. L. Rosbaum

Lærebog i den høiere
Mathematik. Første Deel

1849 Chr. Grøndahl

2 The development of mathematical analysis
I will now take a closer look at three important participants in the development of
mathematical analysis.

2.1 Bernard Bolzano

An intuitive and geometrical interpretation of real numbers did not satisfy the 19th
century mathematicians’ demand for purity in methodology, and the need for a new
understanding of real numbers did arise in connection with the proof of the intermediate
value theorem. This theorem was proven by Bolzano (1817), and both continuity of
functions and convergence of infinite series are defined and used correctly in this paper, as
it is understood in a modern sense. Bolzano’s comprehensive paper was later translated
into English (Russ 1980, 2004), and the latest of these two translations forms the basis
of the following short description.

According to Russ (1980: 157), Bolzano’s paper includes «the criterion for the (point-
wise) convergence of an infinite series, although the proof of its sufficiency, prior to any
definition or construction of the real numbers, is inevitably inadequate». This criterion
is, however, not concerning the definition of convergence, but the Bolzano-Weierstrass
theorem, which states that every bounded sequence has a convergent subsequence.

Bolzano’s only strict requirement is «that examples never be put forward instead



of proofs and that the essence [Wesenheit] of a deduction never be based on the merely
figurative use of phrases or on associated ideas, so that the deduction itself becomes void
as soon as these are changed»4 (Russ 2004: 256).

The comprehension of the concepts of real numbers is clear when Bolzano emphasizes
that «between any two nearby values of an independent variable, such as the root x of
a function, there are always infinitely many intermediate values.» He continues that
for any continuous function, there is no last x which makes it negative, and there is no
first x which makes it positive (Russ 2004: 258). Bolzano states in a theorem (Russ
2004: 266–67) that if in a series5 of quantities, the difference between the nth term and
every later term is smaller than any given quantity if n has been taken large enough, then
there is always a constant quantity, and only one, which the terms of the series approach,
and to which it can come as near as desired if the series is continued far enough. In a
following note (Russ 2004: 268), he explains that if one is trying to determine the value
of such a quantity as described above, namely by using one of the terms of which the
given series is composed, then the value cannot be determined entirely accurately unless
all terms after a certain term are equal to one another. One cannot, however, conclude
that the value of a quantity is irrational if it cannot be determined accurately by the
terms of a certain series.

It is worthwhile to emphasize the fact that Bolzano’s notion of «irrational» is not
the classical definition by the Greeks. Russ (2004: 2) writes that «In the 1830s, he
[Bolzano] began an elaborate and original construction of a form of real numbers – his
so-called ’measurable numbers’. . . . He formulated and proved (1817) the greatest
lower bound property of real numbers which is equivalent to what was to be called
the Bolzano-Weierstrass theorem. He later gave a superior proof with the aid of his
measurable numbers.»

Bolzano introduces measurable numbers in his Pure Theory of Numbers6 (Russ
2004: 347–49, 360–61). According to the definition, S is measurable when

∀q ∈ N ∃p ∈ Z such that S =
p

q
+ p1 =

p+ 1

q
− p2 where p1 ≥ 0, p2 > 0

In other words
p

q
≤ S <

p+ 1

q

Bolzano explains that p1 and p2 denotes a pair of strictly positive number expressions,
the former possibly denoting zero (Russ 2004: 361).7

4Bolzano also criticised Gauss’s original proof of the fundamental theorem of algebra of 1799, because
Gauss here used geometrical considerations to prove an algebraic theorem (Otte 2009: 53). Bolzano did
not doubt the validity of the theorem, but he criticised the «impurity» of the method.

5Russ uses the word «series» in this English translation of Bolzano’s theorem, where the text might
indicate that «sequence» would be correct. An equivalent use of «series [Reihe]» is found in Bolzano’s
Paradoxien des Unendlichen, (Russ 2004: 602).

6«Reine Zahlenlehre». Was not published until late 20th century (Russ 2004: 681). Bolzano wrote in
a letter, dated 5th of April, 1835, to one of his former students, that he had «one book near completion
with the title Pure Theory of Numbers consisting of two volumes: an Introduction to Mathematics,
the first concepts of the general theory of quantity, and then the Theory of Numbers itself » (Russ
2004: 347).

7Bolzano denoted them p1 and p2, but the superscripts only distinguished, they where not powers
(Russ 2004: 349). I have chosen to use subscripts to avoid confusion.



The measurable number may be used to measure, or determine by approximation,
the magnitude or quantity. Bolzano called the fraction p

q
the measuring fraction, and

the fraction p+1
q

the next greater fraction. p1 is called the completion of the measuring
fraction since S = p

q
+ p1. Every rational number is a measurable number where p1 = 0,

and indeed a complete measure.
Abel is the only known reference that Bolzano was known already in the 1820s,

as he mentions Bolzano in his Paris notes (Schubring 1993: 45). Schubring (1993: 50)
writes that during the four months Niels Henrik Abel stayed in Berlin in 1825, he was
in close contact with August Leopold Crelle and his mathematical circle, where he was
engaged in intensive conversations on all mathematical issues. Crelle had Bolzano’s
three booklets in his personal library, and Abel’s reading of Bolzano was part of this
process of communication.

2.2 Augustin Louis Cauchy

The major work of Augustin-Louis Cauchy (1789–1857), Cours d’analyse from
1821 (Bradley and Sandifer 2009), was designed for students at École Polytechnique, and
Cauchy was concerned with developing the basic theorems of the calculus as rigorously
as possible.

Cauchy makes a clear distinction between number and quantity (Bradley and San-
difer 2009: 5–6,267–68), where numbers arise from the absolute measure of magnitudes,
and quantities are real positive or negative quantities, that is to say numbers preceded
by the signs «+» or «−». Quantities are intended to express increase or decrease,8
and to indicate this intention, we represent the sizes that ought to serve as increase
or decrease as numbers preceded by a sign. The numerical value, or absolute value, of
a quantity is the number that forms the basis of the quantity, and we may perform
arithmetical operations on a quantity. Absolute numbers are considered to be only the
proper numbers. Negative numbers are quantities, and the difference between a number
and a quantity is the difference that is between an absolute number, and a number with
an additional quality, for instance a sign. A positive number may therefore be both a
number and a quantity (Schubring 2005: 446).

Cauchy says that a variable is called variable if it is able to take on successively
many different values, as opposed to a constant when it takes on a fixed and determined
value. A variable quantity becomes infinitely small when its numerical value decreases
indefinitely so that it converges towards the limit zero. Corresponding, a variable
quantity becomes infinitely large when its numerical value increases indefinitely so that
it converges towards the limit ∞ (Bradley and Sandifer 2009: 6,21-22).

He had to leave France for political reasons, and he met Bolzano in Prague
(Schubring 2005: 429). Some historians (see Grabiner 2005: 11) assert that Cauchy
was very influenced by Bolzano, and especially his proof of the intermediate value
theorem (Bolzano 1817), when he wrote Cours d’analyse. His works made, however,
a new standard for the demands of rigour in connection with concepts like limit and
convergence. Cauchy neither started nor completed the rigourization of analysis, but he
was, according to Grabiner (2005: 166), more than any other mathematician responsible
for the first great revolution in mathematical rigourization since the Greeks in the
Antiquity.

8accroissements or diminuitions (Schubring 2005: 446)



2.3 Martin Ohm

Martin Ohm was autodidact in mathematics, and a teacher, which may have lead him to
the idea that mathematics needed to be completely revised, in order to reach a broader
public and to achieve a higher logical clarity. He made an attempt to make a completely
consistent foundation for mathematics (Ohm 1832) – to found a concept of numbers
free of contradictions, and to provide an appropriate conception of negative numbers for
it. Prior to that, he wrote an elementary book on number theory (Ohm 1816), and a
book in pure elementary mathematics in two volumes.9 The separation of number and
quantity was the core of Ohms number concept, and there are no other numbers than
«absolute integer numbers». Zero, negative numbers, rational and irrational numbers are
extensions. (Schubring 2005: 521pp)

Ohm defines the arithmetical operations addition and multiplication traditionally
in the first volume of pure elementary mathematics (Gericke 1996: 136). One adds two
number by imagining a number that has as many units as the two numbers together,
and one multiplies a number a by a number m by adding a, m times to itself. The
quotient a

b
is defined as the number that gives a when it is multiplied by b.

3 Textbooks and irrational numbers
In the following sections, I will show some of my findings concerning the development of
Holmboe’s definitions of irrational numbers, and compare that with definitions found
in the other textbooks in arithmetics and algebra in the Danish language, that may
have been used or known in the learned schools in Norway in the first half of the 19th
century. The focus will be on their way of handling the rigour in mathematical analysis.

The mathematical notation in the English translations are in some cases slightly
modernized by me, but the original quotation in the footnotes are unaltered.

3.1 Bernt Michael Holmboe

In the first edition of Holmboe’s textbook in arithmetics (Holmboe 1825), irrational
numbers are defined as

Any number, that can be expressed neither as a whole number nor as a fraction,
whose numerator and denominator are whole and finite numbers, is called an
irrational number.10

This definition tells us what an irrational number isn’t, it doesn’t tell us what it is.
Opposed to irrational numbers, all whole numbers and fractions, whose numerator and
denominator are whole and finite numbers, are called rational numbers. The definition
has some corollaries, or supplements, and the following corollary explains intuitively
that

One can always find a rational number, whose value approaches the value of a
given irrational root, so that the difference between them is less than any given
unit fraction.11

9Die reine Elementar-Mathematik, 1825 and 1826
10«Ethvert Tal, der hverken kan udtrykkes som et heelt Tal eller som en Brøk, hvis Tæller og Nævner

ere hele og endelige Tal, kaldes er irrationalt Tal.» (Holmboe 1825: 134)
11«Man kan altid finde er rationalt tal, hvis Værdie nærmer sig Værdien af en given irrational Rod

saameget, at Forskjellen mellem begge er mindre end en given Brøkeenhed.» (Holmboe 1825: 136)



The definition of irrational numbers in Holmboe (1844), and subsequent editions,
may indicate an influence by Bolzano and his definition of measurable numbers. It is
also noteworthy that Holmboe now specifies magnitude, and not number.

Any magnitude, that can be expressed neither as a whole number nor as a fraction,
whose numerator and denominator are whole and finite numbers, but whose value
always falls between two fractions t

n and t+1
n , where t and n are whole numbers,

and where one can make n larger than any given number, is called an irrational
number.12

This following corollary from Holmboe (1844) shows how two magnitudes between
the same two limits must be the same magnitude. In Holmboe (1850), the specification
of irrational is taken out – the statement is valid for real magnitudes, rational and
irrational.

If two irrational, positive magnitudes P and Q, both independent of n and between
boundaries of the form r and r + a

n , are in such a way that r < P < r + a
n and

r < Q < r + a
n , where one can make n larger than any given number and a is

finite. Then is P = Q.13

Finally, this definition from Holmboe (1850) shows that if x and y are two irrational
magnitudes, squeezed between two pairs of rational limits, then the sum x+y is squeezed
between the sums of the lower and of the upper limits, and the difference of these to
sums of limits also disappears when n grows infinitely, which makes the sum x + y
unique.

If one or both of two magnitudes, x and y, are irrational, and where t
n ≤ x < t+1

n

and p
n ≤ y < p+1

n , and one can make n larger than any given number. The sum
x+ y is then to be understood as the common boundary for the sums t

n + p
n and

t+1
n + p+1

n , whose difference is 2
n , which disappears when n grows infinitely.14

3.2 Hans Christian Linderup

The Danish teacher of mathematics, Hans Christian Linderup (1763–1809) published
a basic textbook (Linderup 1807), where he proves that a power of an irreducible fraction
never can be a whole number. As a corollary to this he claims that when the root of a
whole number is not a whole number, it is also not a fraction, whose numerator and
denominator are finite numbers, but as any quantity must be expressed by whole numbers
or fractions, must this root necessarily be a fraction; it is consequently a fraction, whose

12«Enhver Størrelse, der hverken kan udtrykkes som et heelt Tal eller som en Brøk, hvis Tæller og
Nævner ere hele og endelige Tal, men hvis Værdie altid falder mellem to Brøker t

n og t+1
n , hvor t og n

ere hele Tal, og hvor man kan gjøre n større end ethvert givet Tal, kaldes er irrationalt Tal. (Holmboe
1844: 128)»

13«Falde 2 irrationale positive af n uafhengige Størrelser P og Q mellem Grændser af Formen r og
r + a

n , saaledes at P > r, P < r + a
n , Q > r, Q < r + a

n , hvor stor man gjør n, naar a er en endelig
Størrelse: saa er P = Q;» (Holmboe 1844: 128–29)

14«Er af Størrelserne x og y den ene eller begge irrationale, x = eller > t
n og x < t+1

n , y = eller > p
n

og y < p+1
n , hvor stor man gjør n, saa forstaaes ved Summen x+ y den fælles Grændse for Summerne

t
n + p

n og t+1
n + p+1

n , hvilke Summers Forskjel er 2
n , der forsvinder med 1

n , det er, naar n voxer i det
Uendelige.» (Holmboe 1850: 115–16)



numerator and denominator are infinitely large, and therefore may never be expressed
exact. Such root magnitudes are called irrational numbers.15 The term infinitely large
must here imply that the fraction is a limit, reached by stepwise expanding the numerator
and denominator. This mode of expression is intuitive, and does not have an evident
mathematical definition.

Linderup is here talking about any root, and he specifies this in the next corollary,
by defining that if the square root of a number is a whole number, then the original
number is a perfect square number,16 if the cube root of a number is a whole number,
then the original number is a perfect cube number,17 and likewise for any power. If the
root on the other hand is not a whole number, then the number is called an imperfect
square and cube number,18 or in general, an imperfect power.19 He concludes that all
roots of imperfect powers are irrational numbers.

3.3 Ole Jacob Broch

Holmboe’s former student, and successor as professor in mathematics at the university,
Ole Jacob Broch (1818–1889), published in 1839 a collection of exercises and examples
(Broch 1839) to Holmboe’s textbook. He also published in 1860 a textbook in arithmetic
and algebra which succeeded Holmboe’s textbook in the learned schools. In this book
he defines in the introduction that mathematics is the science about magnitudes and
their connections. The study of magnitudes separate from any matter is called pure
mathematics, and the study of magnitudes belonging to material objects is called applied
mathematics.20 He continues to say that if we look at several magnitudes of the same
kind, and we focus first on one specific magnitude, and then on the whole collection of
magnitudes, then we have the conception of one magnitude and of several magnitudes.
The word unit is used to characterize any of these homogeneous magnitudes, and the
word number is used to characterize a collection of units as well as the unit itself.21

He shows in the section about powers and roots that when the root value of a natural
number is not a natural number, it can not be a fraction either, where both numerator
and denominator are whole and finite numbers (Broch 1860: 184). He continues that
one may always approximate its value by a fraction, such that the difference between the
root value and the fraction is smaller than any given finite positive magnitude, however

15«Naar altsaa Roden til et heelt Tal ikke er et helt Tal, er det heller ingen Brøk, hvis Tæller og
Nævner ere endelige Tal; men da enhver Mængde maa kunde udtrykkes ved hele Tal og Brøk, maa
denne Rod nødvendig være en Brøk; den er altsaa en Brøk, hvis Tæller og Nævner ere uendelig store,
og følgelig aldrig nøiagtig kan udtrykkes. Saadanne Rod-Størrelser kaldes irrationale tal.» (Linderup
1807: 99).

16fuldkomment Quadrat-Tal
17fuldkomment Cubik-Tal
18ufuldkomment Quadrat- og Cubic-Tal
19ufuldkommen Potens
20«Mathematik er Læren om Størrelser og deres Forbindelser. Forsaavidt den betragter Størrelserne

afsondrede fra enhver Materie, kaldes den reen Mathematik ; betragter den derimod Størrelserne som
henhørende til materielle Gjenstande, kaldes den anvendt Mathematik.» (Broch 1860: 1)

21«Naar vi betragte flere Størrelser af samme Art, og vi henvende vor Opmærksomhed først paa een
af disse Størrelser i Særdeleshed, dernæst paa den hele Samling af Størrelser, saa have vi Begrebet om
een Størrelse og om flere Størrelser. Man benytter ordet Enhed for at betegne en hvilkensomhelst af
disse eensartede Størrelser, og man betegner ved ordet Tal saavel den hele samling ef Enheder som
ogsaa Enheden selv.» (Broch 1860: 1)



small it is chosen.22

p < n
√
a < p+

1

x

p is here simply called a number,23 but it is obvious that Broch means a rational number,
and 1

x
is a unit fraction.24 An irrational magnitude is then defined as a magnitude that

cannot be expressed by a finite number of digits, either as a whole number or as a
fraction, whose numerator and denominator are whole and finite numbers, but whose
value always may be given within two limits, specified by a finite number of digits, and
whose difference may be made smaller than any positive magnitude, or may approach
zero as much as one wants. If the limits that the irrational magnitude is bounded by are
positive, then the magnitude is an irrational number (Broch 1860: 186–87).25 Broch’s
definition is general, since the irrational magnitude does not need to be a root. The
irrational magnitude may also be a magnitude that cannot be expressed by a root with
a finite number of digits under the radical sign.

Unlike a rational number, an irrational may never be transformed into a periodic
decimal fraction. He also shows that two irrational magnitudes are equal if they are
bounded by the same two limits, whose difference may be made smaller than any given
positive magnitude, however small it is chosen. In other words

p < a < p+
1

x
∧ p < b < p+

1

x
=⇒ a = b

Furthermore, by adding or multiplying these limits of two irrational numbers
respectively, the difference between the sum or product may be made smaller than
any given positive magnitude, however small it is chosen. This extends the concept
of addition and multiplication to include irrational numbers. All theorems regarding
addition and multiplication are only proven for rational numbers, and must therefore
also be valid for the rational limits of irrational numbers. As the difference of these limits
may be made smaller than any finite positive magnitude, and these limits determine the
irrational numbers, then must consequently all these theorems also be valid for irrational
numbers.

The doctrines about subtraction and division are based on the doctrines about
addition and multiplication, and consequently must all theorems valid for rational
numbers also be valid for irrational numbers. Likewise must the doctrines about powers
be valid if the root is irrational. (Broch 1860: 189–90)

22«Men man kan isaafald dog stedse tilnærmelsesviis udtrykke dens Værdi ved en saadan Brøk,
saaledes at dennes forskjel fra Rodstørrelsen bliver mindre end enhver given endelig positiv Størrelse,
hvor liden denne end er valgt.» (Broch 1860: 185)
Broch’s original symbolic notation is « n

√
a > p og (and) < p+ 1

x»
23Tal
24Brøkenhed
25«En Størrelse, som ikke kan udtrykkes med et endelig Antal Ziffre, hverken som et heelt Tal eller

som en Brøk, hvis Tæller og Nævner ere hele og endelige Tal, men for hvis Værdi der altid kan angives
to med et endeligt Antal Ziffre udtrykte Grændser, hvis Differents kan gjøres mindre end enhver given
endelig positiv Størrelse, eller bringes til at nærme sig Nul saameget man vil, kaldes en irrational
Størrelse, eller, hvis dens Grændser ere positive, et irrationalt Tal.»



4 A brief summary
The following is an overview of the significant events mentioned in this paper.

1816–17: Bernhard Bolzano publishes binomische Lehrsatz, and proof of the
intermediate value theorem

1816: Martin Ohm publishes elementary number theory
1821: Cauchy publishes «Cours d’analyse»
1822–: Martin Ohm works on «Complete system ... »
1825: First edition of Arithmetiken
1825–26: Abel is in Berlin where he meets Crelle and Ohm, and in Paris where

he meets Cauchy.
1830ies: Bolzano writes about measurable numbers (unpubl.)
1844: Second edition of Arithmetiken
1850: Third edition of Arithmetiken

Abel, who was Holmboe’s student at Christiania Kathedralskole and who remained
Holmboe’s confident friend the rest of his life, is the only known reference that Bolzano
was known already in the 1820ies. He mentions Bolzano in his Paris notes. August
Leopold Crelle had the three books that Bolzano published in 1816–17. The way Holmboe
writes about irrational numbers in the editions from 1844 and later is very similar to
Bolzano’s description of measurable numbers, and not similar to other contemporary
textbook authors.
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