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ABSTRACT 

This work covers  the first half of the 
thXIX  century, and more specifically  the period 1805 to 1855, which 

concerns our quest to find roots to numerical mathematics.  We chose the date of 1805 with Legendre on least 
squares, and Gauss on the Fast Fourier Transform (FFT), also the closing date of 1855 with Chebychev and his 
discrete generalized Fourier series.  During this period, at least four great mathematicians: Gauss, Cauchy, 
Jacobi and Dirichlet contributed greatly to the “approximation mathematics”, and  we shall present some of their 
motivations.  In this present work, what concerns us mostly is what is called the “almost lost and found again”.  
We have selected  by chronological order, the 1833 Duhamel principle on convolution, and the 1841 Sarrus 
article about  systems of non-linear equations, with the concept of robustness in numerical mathematics. 
 

1 Introduction 
This work covers the first half of the thXIX century, and more specifically the period from 
1805 to 1855, which concerns our quest to find roots to numerical mathematics. We selected 
the date of 1805 and the least squares method for the wave it produced in applied 
mathematics, and the closing date of 1855 with Chebychev’s work on discrete generalized for 
its modern applications in signal processing.  Our objective is to present some mathematical 
tools which were almost forgotten such as the Duhamel principle with its links with the 
convolution integral, and the solution of systems of non-linear equations with Sarrus’ ideas 
and the evolution towards robustness in mathematics.  Firstly, let us quote Odifreddi (p. 92, 
2004) about pure and applied mathematics: 

“Mathematics like the Roman god Janus, has two faces.  One is  turned inward, towards 
the human world of ideas and abstraction, while the other looks outwards, at the 
physical world of objects and material things… The second face constitutes the applied 
side of mathematics, where the motives are interested, and the aim is to use those same 
creations for what they can do. “  

Householder (p. v, 1970) argued that the adjectives “pure” and “applied” are meaningful only 
to describe mathematicians, but not branches of mathematics! The truth is that some 
mathematicians tried to build mathematical tools for practical applications and their 
usefulness. They were also motivated by the validity of their approach. This present work  
concerns  a period of fifty years from 1805 to 1855, i.e., from the Napoleonian regime to the 
Second Empire in France. From this epoch, two men seem to dominate: C.F. Gauss for the 
fertility of his methods and ideas, and Cauchy for the validity of mathematical tools. If we 
take Cauchy as an example, he developed the existence theorems for ordinary differential 



equations, the solution of systems of linear differential equations, the interpolation theory, the 
spectral theorem for matrices, the convergence properties of the Newton method for finding 
roots, and the steepest descent for minimization methods, etc. Gauss’ contributions on the 
solution of linear equations were a major breakthrough, and also his Gaussian quadrature for 
the numerical solution of integrals. These contributions are well presented in books on the 
history of numerical methods, such as Chabert et & al. Histoire d’algorithmes (1993). Let us 
list by chronological order some main mathematical tools that mathematicians developed for 
this period from 1805 to 1855: 
1805:        Legendre:   least squares 
1805:        Gauss:        Fast Fourier Transform (FFT)  
1809- 1810 : Gauss:    least squares  
1809-1810:  Gauss:     gaussian elimination for  systems of linear equations  
1809 :       Gauss:        solution of systems of  two non-linear equations by Regula Falsi 
1816:        Gauss:        gaussian integration  
1823:        Gauss:        iterative method for systems of linear equations  
1819,1820, 1830:  Horner and Holdred:    root computation 
1824-1835: Cauchy:   on the existence of solutions of ordinary differential equations 
(ODES’s)  
                                    Cauchy on systems of ODE 
1826:        Jacobi:        on Gaussian quadrature 
1829:        Cauchy:      convergence of Newton’s method for root finding  
1829:        Lejeune Dirichlet: pointwise convergence on Fourier series  
1831:        Gauss:        on numerical lattices  
1833:        Duhamel:   Duhamel principle for inhomogeneous differential equations 
1840:        Cauchy:      on interpolation 
1841:        Sarrus:        on the solution of systems of non-linear equations 
1845;        Jacobi:        iterative method for systems of linear equations  
1846:        Jacobi:        algebraic eigenvalue problems  
1847:   Thomson-Dirichlet principle  
1847:       Cauchy:       steepest descent (optimization theory) 
1850:        Lejeune-Dirichlet: on tessellations  
1850:    Sylvester:    on matrices 
1851:        Shellbach:   numerical solutions of partial differential equations (PDE’s) 
1855:        Chebychev: generalized discrete Fourier  series  
1855:        Cayley:        on matrices 
This period of time from 1805 to 1855 saw a blossoming of mathematical tools for numerical 
problems. This genetic approach for the work could be used for second year students in 
applied mathematics, who have some knowledge on partial differential equations and the 
method of separation of variables, while the second part of this research could be used for 
students having some interest on numerical analysis or optimization theory. 
 
 



2 Duhamel principle and convolutions  
Unfortunately, if the convolution integral is a classical modern tool in mathematical physics 
and signal processing, its long period of genesis is generally ignored by educators.  
In its modern definition, a convolution corresponds to the mathematization of a memory 
problem, smoothing processes, or more precisely, it involves an operator with translational 
invariance, and the famous principle of causality being that the future cannot influence the 
present (Sirovich, pp. 80-82, 1988).   

During the thXVII century, physical properties of the convolution appeared in the Huygens 
Treatise on Light (1690).  Figure 1 is an illustration of Huygens’ principles about the 
propagation and the superposition of spherical waves.  He wrote: 

“But we must consider still more particularly the origin of these waves, and the manner 
in which they spread.  And, first, it follows from what has been said on the production 
of Light, that each little region of a luminous body, such as the Sun, a candle, or a 
burning coal, generates its own waves of which that region is the centre.  Thus in the 
flame of a candle, having distinguished the points A, B, C, concentric circles described 
about each of these points represent the waves which come from them” 

 
Figure 1: Huygens’ candle and the propagation and superposition of spherical waves 

 
Convolution integrals appeared at the beginning of the thXIX century in the potential 

theory, the heat conduction equation, and the wave equation, with Cauchy, Fourier and 
Poisson.  They appeared from trigonometric operations as a convenient way to represent 
analytical results.  For example, Poisson (1823, p. 434) wrote his Euler-Fourier series as: 
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Indeed the history of the convolution integral is also linked to integral equations and  

Abel’s work (1826) who presented a convolution integral for the time of descent of a particle 
starting at a point P sliding down a smooth curve.  

From these works emerge the 1815 Cauchy contribution Wave propagation in deep water 
(Cauchy 1815-1827; Dahan Dalmedico, 1989) and the Duhamel principles (1833) on 
radiating heat processes, with complex radiating boundary conditions. These Duhamel 



principles are occasionally mentioned in books on mathematical physics such as Courant and 
Hilbert Methods of Mathematical Physics (vol. 2, 1953-1962), or Hildebrand Advanced 
calculus for Applications (pp.464-465, 1976).  Jean-Marie Constant Duhamel was born in 
Saint-Malo, France in 1797, and died in Paris in 1872.  He became a professor at the École 
polytechnique in Paris.  His third theorem is stated as follows: 

“If a part of the surface of a body is maintained, along with certain points within the 
interior, at temperatures that vary with time in some way, and the rest of the surface 
radiates in a medium where all points have some variable temperatures with time, we 
will obtain in the following way, temperatures of  the points of the system, and we will 
calculate the temperatures of the different points of the body, while supposing that no 
change takes place in temperatures of the medium, and of all the points of the surface 
and its interior, of which the law of temperatures is given: we shall consider next the 
increases produced, at some instant in the temperatures of these last points and of the 
medium, and we shall calculate the temperatures of various points of the body at the end 
of time t, by giving them zero as initial temperature: we will do the sum of the 
temperatures of homologous points of these systems, and we will that way obtain 
temperatures of the same points in the proposed system.” 
Duhamel introduced into mathematics the Huygens physical concepts about memory, time-

delay, and superposition of events. For example, let us assume that ( )tϕ is the variable 
temperature of the surrounding medium of a one-dimensional heat conducting rod, which is 
radiating into this medium, at its extremities. Then, ( )tϕ  has a complex action on the temperature 
of the rod.  Duhamel assumed that he started from an initial condition (0)ϕ  with an action 

( , )A x t . Then, at time 1θ  and the condition 1( )ϕ θ ,  the action would be delayed as 1( )A t θ−  
updated by an additional step 1( ( ) (0))ϕ θ ϕ− , and so on. It was a discretisation of a complex 
integration, a technique of quadrature, and the final temperature corresponded to the summation 
of the action of all rectangular panels. The result would be the classical convolution integral. The 
summation process and the convolution integral are illustrated in the following equations: 

 
Figure 2: Approximation of the function ( )tϕ by rectangular panels. 

 



1 1 2 1 2

1

1

1
0

( , ) (0) ( , ) [ ( ) (0)] ( , ) [ ( ) ( )] ( , )] ...
[ ( ) ( )] ( , )]

( , ) (0) ( , ) ( , )

n n n

n

k k
k k

V x t A x t A x t A x t
A x t

V x t A x t A x t

ϕ ϕ θ ϕ θ ϕ θ ϕ θ θ
ϕ θ ϕ θ θ

ϕϕ θ θ
θ

−

−

+
=

= + − − + − − +
+ − −

Δ⎛ ⎞= + − Δ⎜ ⎟Δ⎝ ⎠
∑

      

We obtain the convolution integral by taking the limit version of the above expression: 

 
0
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Duhamel illustrated his technique by applying it to the general solution of the heat conduction 
equation of a one-dimensional problem with three arbitrary conditions, 
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where a is the thermal diffusivity coefficient, l is the length of the rod, and D is the domain of 
integration.  The equation was coupled with radiating boundary conditions at both ends: 
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and the initial condition: ( ,0) ( )V x F x= , where ( ), ( ), ( )x x F xϕ ψ are arbitrary functions. The 
radiating boundary conditions corresponded to the Newton law of cooling, and both ends 
radiated into mediums of thermal conductivities h and k, while the lateral surface is isolated. 
Duhamel proceeded by steps: 

a) He first looked for a permanent simplified solution in the limit t →+∞ , with 
1 1( ) ( )t V const t V constϕ ψ ξ= = = + = . 

b) He then solved the time dependant problem for homogenous boundary conditions with 
1 0V ξ= = , and then did a transformation of variables in the case 1 0V ξ≠ ≠ . 

c) Finally, he replaced  1V and 1V ξ+ by the initial values (0)ϕ and (0)ψ , 
d) At time t θ− , he superposed a solution V1 ≅ φ’(θ) Δθ, ξ ≅ (ψ’(θ) - φ’(θ)) Δθ 

 Duhamel ended up with an integral of the type: { }2 ( )
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the same behavior as the convolution integral given by Eq. 2. The solution appeared as a time-
convolution integral in terms of the derivatives of the boundary conditions. 
Convolution integrals also, slowly, appeared in linear non-homogenous ordinary or partial 
differential equations. An example of this was the Liouville second memoir (1837) on 
differential equations, where the convolution integral appeared in the solution of the 
differential equation: 
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The famous 1882 Kirchhoff formula for the solution of the three-dimensional wave equation 
can also be understood as a time-convolution integral (Kline, vol.2, p. 694, 1972).  

3 Zeros of a vector equation: towards robustness  
The second tool concerns the 1841 Sarrus contribution to the solutions of non-linear vector 
equations. It is an enlightened anticipation towards the modern concept of robustness in 
mathematics (Box, 1953), because finding the roots of a vector equation is a very difficult task. 
A method is said to be robust, if it is reliable and efficient. For example, the classical least 
squares method is not, because it is too sensitive to outliers.  Firstly, we shall review the state of 
knowledge for finding roots of a single non-linear equation ( ) 0f x = . This is one of the most 
commonly occurring problems of applied mathematics. At the beginning of the thXIX century, 
available tools were the Newton-Raphson method, the regula-falsi (also known as the method 
of the false position) and the method of continued fractions. These numerical methods for root 
finding are iterative methods. The ongoing interest in continued fractions was reflected in 
Gergonne and Liouville journals, where we found at least 7 articles concerning this topic. In 
England, important progress was made in computation of a real root of a polynomial equation 
with the Horner-Holdred rule. In 1818, Fourier (Ostrowski, 1966) emphasized that the Newton-
Raphson method was one of the most useful tools in all analysis.  This is why it was important 
to complete it and to overcome its deficiencies, i.e. the divergence problem. Indeed, for the 
period of time between 1805 to 1855, the 1829 Cauchy contribution about convergence 
properties of the Newton method dominated. At this epoch, Lagrange book “Traité de la 
résolution des equations numériques” (1798) became a corner stone in this domain. Again, the 
two volume Legendre book “Théorie des nombres” (1830) contained an appendix about 
numerical root findings and a voluminous chapter on continued fractions. Given this state of 
knowledge for the roots of a non-linear equation, we examine the problems for the zeros of a 
vector equation. From Gauss (1809), Fourier (1818), and Sarrus (1841), we were struck by the 
concern of geometers about the robustness of their methods. This robustness is directly linked to 
the consequences of the intermediate value theorem for continuous functions, which states that: 

“between every two values of the unknown quantity, which give results of opposite sign, 
there must always lie at least one real root of the equation.” 
Before Bolzano (1817), proofs of this theorem were based on geometrical propositions. 

Furthermore, Bolzano utilized a bisection technique on the proof of one of his theorem.   
These robustness concepts appeared in the 1809 Gauss article who selected the analogy of 

the regula falsi for two equations with two unknowns. The regula falsi utilizes the 
intermediate value theorem and root bracketing. The concept of the regula falsi was to 
progressively decrease the interval of uncertainty for root findings.   

In 1841, Pierre–Frédéric Sarrus published his article in Liouville Journal: Sur la résolution 
des équations numériques à une ou plusieurs inconnues et de forme quelconque. Sarrus was 
born in 1798 in a small town in France. In 1829, he became professor of mathematics at the 
University of Strasbourg. He died in 1861. He published regularly in Gergonne’s journal, 
where he had 23 publications from 1820 to 1828.  



In his 1841 article, Sarrus proposed three safe methods for root findings. In the first 
method, he searched for upper and lower bounds for all variables, which include the roots.  
Then, he proposed a subdivision of the system of bounds for root bracketing. Unfortunately, 
Sarrus was not explicit enough on his subdivision; probably, it corresponded to a technique of 
bisection. This technique of division of an interval by a factor 2 was well known as a binary 
search during the thXVIII century. For example, it was the algorithm for finding a word in a 
dictionary. We can consider that Sarrus’ first method is an ancestor for the modern “cubic” 
algorithm where roots  are included in n-dimensional parallelepiped with sides parallel to the 
coordinate axes (Hansen, 1980; Galperin, 1988). Sarrus’ style was very direct, efficient and 
modern with almost an algorithmic approach, as we will see in the following sentences: 

“In view of one or more equations of any form: 
0, 0, 0,...,L M N= = =  

In one or several unknowns, which number can be different of that of the equations; in 
view of, besides a system of limits of values of unknowns, find all values of unknowns  
which can be comprised between the given limits, and satisfy, at the same time the 
equations 0, 0, 0,...L M N= = =  . 
First method: We will start by looking at inferior limits of values which can be received 
by the functions , , ,...L M N when we vary , , ,...x y z between the given limits. 
But when all calculated inferior limits will be negative, we will proceed to calculate the 
superior limits of values of the same functions  , , ,...L M N  .” 

 We then have to reduce the intervals of uncertainty for each variable: 
“Accordingly to that, we will subdivide the system of given limits of values , , ,...x y z  in 
several systems of limits more closely, which the entirety will contain the same extent 
as that of the systems of primitive limits” 

Sarrus’second method was also based on interval analysis, but this time, Sarrus transformed a 
system of non-linear equations into a minimisation problem.  In 1847, Cauchy will do the 
same for his steepest descent algorithm. 

Second method.  We will take some positive numbers , ,α β γ , and doing so, to abridge, 
2 2 2 ...V L M Nα β γ= + + +  

We will then only have to resolve the sole equation 0V = . Then we will treat this latter 
equation by the process of the first method, but with this difference, that it is entirely useless 
to calculate the upper limits of values of the auxiliary function V. Indeed, according to the 
compositions of this function, it can never become negative; consequently, his upper limits 
will always be positive, and that’s everything we need to know. 

The third method corresponded to a linearization of the equations and a modified generalized 
Newton method for a system of non-linear equations. Again, Sarrus, being a Fourier follower, 
was searching upper and lower bounds for all variables. He said to stop calculations, if the 
system had tendency to diverge. 

Third method. It is easy to modify Newton’s method, in such a way, that it is never at 
fault, at least, till the number of unknowns will not surpass that of the equations.” 



Unfortunately, Sarrus didn’t illustrate his methods with examples. Curiously, in 1847, 
Joseph Liouville, presented a new method for the solution of vector equations, but he hadn’t 
mention Sarrus’ contribution! 

4 Conclusion 
For this work, we could have chosen as well the 1846 Jacobi method on the eigenvalue 
problem. This method is well covered in any textbook on numerical analysis, but the history 
of the numerical eigenvalue problem is not.  Among other fruitful mathematical tools which 
were developed during the period of time from 1805 to 1855 are the 1850 Dirichlet work on 
tessellations, the 1851 Shellbach work on numerical solutions of partial differential equations, 
and the 1855 Chebychev article on generalized discrete Fourier series.  
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