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ABSTRACT

The idea of continued fractions in several dimensions has at least two roots. One is the idea
of generalizing J. L. Lagrange’s characterization of quadratic irrational numbers as periodic
continued fractions. This path was followed by C. G. Jacobi. The other idea is to provide
approximations to an n-tuple of numbers by rational numbers with a common denominator.
This problem is deeply rooted in history and related to musical theory. Several proposals
related to the names of Jacobi, Poincaré, Brun, Selmer, and others have been made. Due to
the elementary nature of posing the problem one can use some original publications even in
school.

1 Jacobi’s attempt

One of the oldest algorithms is the Euclidean algorithm. Most probably its subtractive
form is the original version (Euclid uses the verb ανθυφαιρειν ‘to subtract reciprocally’
to describe this operation; see Fowler 1987). One starts with two real numbers a0 > 0
and a1 > 0 with a0 ≥ a1. Then we form σ(a0, a1) = (a0 − a1, a1) and if necessary
we reorder to obtain a new pair. If a0 − a1 > a1, then we take a′0 = a0 − a1 and
a′1 = a1. We take a′0 = a1 and a′1 = a0 − a1 in the other case. It is possible to speed
up this algorithm by replacing subtraction with division. This means that we form the
pair δ(a0, a1) = (a0 − ka1, a1). Here we put k ≥ 1 the greatest integer such that the
equation a0 − ka1 ≥ 0 holds. Then in all cases a1 ≥ a0 − ka1 and we have a cyclic
reordering. From the present viewpoint it is preferable to use matrices and to describe
the algorithm in the form

(
a′0
a′1

)
=

(
0 1
1 −k

)(
a0

a1

)
.

All important recursion relations can be derived easily by using the product of matrices.
Rational numbers pn

qn
which are called the convergents of the algorithm will be obtained

as follows. (
pn+1 pn

qn+1 qn

)
=

(
pn pn−1

qn qn−1

)(
k 1
1 0

)

It is easy to see that the algorithm stops if and only if a : b is rational.
The algorithm is homogeneous in the following sense. The pair (x0, x1) and the pair
(λx0, λx1), λ 6= 0 lead to the same algorithm. This property suggests using the inho-
mogeneous version

Tx :=
1

x
− k, x =

a1

a0

, Tx =
a′1
a′0

, k = k(x) = [
1

x
].



If a : b is not rational then the rational numbers pn

qn
are good approximations to the

irrational value a
b
. It is possible to make a short digression to the relation between

matrices and fractional linear maps. In ancient Greece it was well known that geometric
ratios can lead to periodic algorithms. The most common examples are the Golden
Ratio and the square root of 2. Translated into present day language we put λ = −1+

√
5

2

and we find the relation

λ

(
1+
√

5
2

1

)
=

(
0 1
1 −1

)(
1+
√

5
2

1

)
.

The idea of periodicity therefore is related to eigenvalues and eigenvectors. In inhomo-
geneous notation we find

λ =
1

1 + λ
.

The connection to the Farey sequence 1, 1, 2, 3, 5, ... is immediate. If Fn+1 = Fn + Fn−1

then one sees
Fn

Fn+1

=
Fn

Fn + Fn−1

which shows

lim
n→∞

Fn

Fn+1

= λ.

There are two ways to explore periodicity. One may start with given irrational numbers
like

√
2,
√

3, ... or one starts at the other end. The periodic expansions

x =
1

k + x

or more generally

x =
pn + pn−1x

qn + qn−1x

lead to quadratic irrational numbers. Last but not least one can state the famous result
of Lagrange.

There are at least two roots for multidimensional continued fractions (see e. g.
Schweiger 2006). One root is the attempt to extend Lagrange’s theorem to n-tuples of
irrational numbers (this was the main point in Jacobi 1868). The other problem is the
question about approximation of an n-tuple of real numbers by rational numbers with a
common denominator. This question is related to musical theory (a good introduction
is Wright 2009; a broader discussion can be found in Assayag et al. 2002). Jacobi,
Poincaré, Brun, Selmer, and others made various proposals for multidimensional conti-
nued fractions. In what follows we will shortly describe their ideas.

In the year 1868 E. Heine published the paper
”
Allgemeine Theorie der kettenbruch-

ähnlichen Algorithmen, in welchen jede Zahl aus drei vorhergehenden gebildet wird“
which he found in the legacy of G. G. J. Jacobi (1804-1851). Due to its complexity
this paper is hardly suitable for use in a classroom. Jacobi considers three real num-
bers (

”
unbestimmte Zahlen“) a, a1, a2 and a sequence of given quantities (

”
gegebene

Grössen“) l,m, l1,m1, l2,m2, . . . . Then he defines



a3 = a + la1 + ma2

a4 = a1 + l1a2 + m1a3

a5 = a2 + l2a3 + m2a4

... ... ........

Translated into matrix theory his algorithm is much more comprehensible in the
form

(a1, a2, a3) = (a0, a1, a2)




0 0 1
1 0 l
0 1 m


 .

As before one sees that the triplets (a0, a1, a2) and λ(a0, a1, a2) determine the same
algorithmic course. Later in the paper Jacobi chooses a different approach. Let u0, v0, w0

be three positive numbers and define l0 = [ v0

u0
], m0 = [w0

u0
]. Then the recursion starts

with u1 = v0 − l0u0, v1 = w0 −m0u0, w1 = u0. With the help of matrices one sees




u1

v1

w1


 =




−l0 1 0
−m0 0 1

1 0 0







u0

v0

w0


 .

Naturally one proceeds by iteration.

In his examples Jacobi puts the first coordinates u0, u1, u2, ... equal to 1. Three
examples are given which lead to periodic expansions.

i)

(u0, v0, w0) = (1,
3
√

2,
3
√

4)

(u1, v1, w1) = (1,
3
√

2 + 1,
3
√

4 +
3
√

2 + 1)

(u2, v2, w2) = (1,
3
√

2 + 2,
3
√

4 +
3
√

2 + 1) = (u3, v3, w3)

ii)
(u0, v0, w0) = (1,

3
√

3,
3
√

9)

(u2, v2, w2) = (u4, v4, w4).

iii)
(u0, v0, w0) = (1,

3
√

5,
3
√

25)

This is a very awkward example because after some lengthy calculations one
finds (u7, v7, w7) = (u13, v13, w13). Note that the original publication contains two
printing errors at this point.

But now we are confronted with a difficult problem. Up to now it is even not known
if the triplet ( 3

√
2, 3
√

4, 1) leads to a periodic expansion. The generalization of Lagrange’s
theorem remains an open problem.

Matrices provide a good representation for convergents by using the equation






Pi+1 Pi+2 Pi+3

Ri+1 Ri+2 Ri+3

Qi+1 Qi+2 Qi+3


 =




Pi Pi+1 Pi+2

Ri Ri+1 Ri+2

Qi Qi+1 Qi+2







0 0 1
1 0 li
0 1 mi


 .

The initial values are given by the unity matrix for i = 0. If we consider the first exam-
ple then we get l0 = 1,m0 = 1, l1 = 2,m1 = 3, l2 = 3,m2 = 3 and then the algorithm
continues periodically with l3 = 3,m3 = 3, l4 = 3, m4 = 3. In this way we obtain a
sequence of approximating fractions with common denominator, the convergents, for
the pair ( 3

√
2, 3
√

4), namely the sequence (1, 1), (4
3
, 5

3
), (15

12
, 19

12
), (58

46
, 73

46
), ....

2 Brun, Selmer and Poincaré

Much more easy to read are the papers by Viggo Brun “Algorithmes euclidiens pour
trois et quatre nombres” (Brun 1957) and “Euclidean algorithms and musical theory”
(Brun 1964). A revealing epilogue on Brun’s contributions has been written by Scriba
1985. Clearly Brun’s paper from 1957 requires some knowledge of French. In fact the
oldest papers by Brun on this subject appeared in Norwegian. The starting point is a
triple (a0, a1, a2) with a0 ≥ a1 ≥ a2 > 0. Then we form σ(a0, a1, a2) = (a0 − a1, a1, a2)
and reorder. There are three possibilities.

a′0 = a0 − a1, a
′
1 = a1, a

′
2 = a2

a′0 = a0, a
′
1 = a0 − a1, a

′
2 = a2

a′0 = a0, a
′
1 = a1, a

′
2 = a0 − a1.

Again the use of matrices is recommended. For practical purposes the inverse matrices
which correspond to the three types of reorder are helpful.

B(0) =




1 1 0
0 1 0
0 0 1


 , B(1) =




1 1 0
1 0 0
0 0 1


 , B(2) =




1 0 1
1 0 0
0 1 0




But now it is time to reveal the connections with musical theory which are also
described in Scriba 1985. In the just intonation scale the ratio of the frequencies of a a
tone to its octave is 1 : 2. We further find the ratio 2 : 3 for the (just) fifth and 3 : 4 for
the (just) fourth. Now you want to construct a musical instrument which has a fixed
number of strings within an octave. If you think of the keyboard of a pianoforte these
should be twelve strings which will become shorter related to the inverse ratio of the
pitch. This could be a good opportunity to make a digression to the history of musical
scales or to the music of the various cultures. Now we request that the ratio of two
subsequent pitches is a fixed number. We look for a number λ such that

λx ≈ 2, λy ≈ 3

2
, λz ≈ 4

3
.

This leads to a problem of Diophantine approximation, namely to approximate the
triple (log 2, log 3

2
, log 4

3
) by three whole numbers. Using some decimal approximations

Brun algorithm leads to the sequence 122010100001.... The wanted triples of num-
bers (x, y, z) can be found as the columns of the matrices.The expansion 1220101 gives



(12, 7, 5) and the longer expansion 12201010000 the values (53, 31, 22). In a similar way
we can also start with the ratios for the octave, the fifth and the major third (5 : 4).
This means to approximate (log 2, log 3

2
, log 5

4
). One finds the triple (12, 7, 4).

In the Western musical practice this approximation is of considerable importance. It
corresponds to a partition of the octave into twelve steps such that subsequent pitches
change by the factor λ = 12

√
2. Therefore, a fifth is given in the equally tempered scale

by λ7 ≈ 1, 498 instead of by 3
2
. In the equally tempered scale the fifth is approximately

two cents flat. On the other hand the fourth 4
3

is replaced by λ5 ≈ 1, 335 which is
approximately two cents sharp. A cent corresponds to the division of an octave into
1200 microtones which gives 1 cent ≈ 1, 0005778. This factor can be derived in a quite
different way. One requires that seven steps of an octave are the same as 12 steps of a
fifth. In fact this is not true in the just scale, since 27 is different from (3

2
)12. We find

219 = 524288 and 312 = 531441. The ratio 312 : 219 ≈ 1, 01365 is called the Pythagorean
comma. If we put the fifth equal to λ7, then we obtain 2 = λ12.

Ernst Selmer’s paper also appeared in Norwegian. He makes a very simple change
in Brun’s ideas. Let a0 ≥ a1 ≥ a2 ≥ 0. Then we put σ(a0, a1, a2) = (a0− a2, a1, a2) and
reorder. The corresponding (inverse) matrices are given as

D(0) =




1 0 1
0 1 0
0 0 1


 , D(1) =




0 1 1
1 0 0
0 0 1


 , D(2) =




0 1 1
1 0 0
0 1 0


 .

However, if a0 > a1 > a2 > 0 then the appearance of D(1) or D(2) does not permit a
following D(0). A genuine reordering of σ(a0, a1, a2) is necessary if a0 − a2 < a1 which
is equivalent to a0 < a1 + a2. The new triple is either (a′0, a

′
1, a

′
2) = (a1, a0 − a2, a2) or

(a′0, a
′
1, a

′
2) = (a1, a2, a0−a2). However, in both cases we obtain a1 = a′0 < a′1 +a′2 = a0.

Selmer had the hope that the question of periodicity would be easier to solve but his
hope was in vain! He calculates the expansion of (log 2, log 3

2
, log 5

4
) but the important

denominator 12 does not appear.

In the year 1884 Henri Poincaré proposed a different approach. His paper is geome-
trically inspired and densely written but Arnaldo Nogueira ( 1995) has given a broad
exposition including some figures. The arithmetic description is very simple. Let
(a0, a1, a2) be a triple of non-negative real numbers. Then there is a permutation π
such that the condition aπ0 ≤ aπ1 ≤ aπ2 is satisfied and we form

(a′0, a
′
1, a

′
2) = P (a0, a1, a2) = (aπ0, aπ1 − aπ0, aπ2 − aπ1).

This algorithm looks very innocent but in fact it leads to difficult problems. Contrary
to Poincaré’s hope it is not very useful for Diophantine approximation. After some
calculations the triple (log 2, log 3

2
, log 4

3
) leads to the approximation (11, 5, 4) but again

the important approximation (12, 7, 5) is left out.

3 Conclusions

Multidimensional continued fractions could be a good topic for instruction at under-
graduate level or even in school. The approach is elementary but leads to interesting



problems including the up to now unsolved problem of finding a simple algorithm to
generalize Lagrange’s theorem. Clearly, some concepts of this paper preferably are
thought for the background knowledge of the teacher. It would be also helpful to work
with continued fractions before starting with their generalizations to higher dimensions.
Hand-held calculators and computers can be used to calculate the very first approxi-
mations of given triples. It is possible to use matrices and if one goes into direction
of periodicity to consider their eigenvalues. It is possible to use at least some parts of
the original publications and to discuss mathematical language as expressed in diffe-
rent languages (German, English, French, and - very ambitious - Norwegian). This can
connect independent working with the development of mathematics. Last but not least
older papers can show that a good notation is very helpful.
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