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ABSTRACT

Dynamic geometry softwares renew the teaching of geometry: geometrical construction be-
comes dynamic and it is possible to ”visualize” the generation of curves. Historically this
aspect of the movement (continuous or not) is natural and was well known to 17th-century
mathematicians. Thus, during the 17th-century, the mechanical or organic description of
curves was re-evaluated by scholars like Descartes or Newton.

In this article, we want to focus on a special class of curves: pedal curves. The definition
of this kind of curves given, we will then briefly retrace their history between the 17th and
the end of 19th-century. And finally, we present some activities which can be produced by a
dynamic geometry software like geogebra.

1 Introduction

Before providing a short summary of the history of this kind of curve from the 17th to
the 19th century, let’s recall the standard definition of the pedal curve:

Definition 1. (C) is a plane curve and O a point on the plane. We consider the foot
P of the orthogonal straight line to the tangent from any point M on the curve. The
pedal curve of (C) is the locus of P when M describes the curve.

For instance, if we consider a circle (C), and O one point of the plane, then its pedal
curve of centre O is the figure 1:

Figure 1: Circle pedal



2 The 17th-century

2.1 Roberval

In fact, this curve (Figure 1) is the first pedal curve found in the 17th-century by Gilles
Personne de Roberval (1602–1675). He spent his time as mathematics teacher in Paris.
He was an active mathematician in Mersenne’s circle. He was in relation with Blaise
Pascal, Pierre de Fermat and Carcavi, but he was in conflict with René Descartes.

We find this notion in a text entilted Observations sur la composition des mouve-
mens, et sur le moyen de trouver les touchantes des lignes courbes included in a posthu-
mous edition of Divers ouvrages de Monsieur de Roberval in 1693. It was reprinted in
the journal Mémoires de l’Académie Royale des Sciences de Paris in 1730. In this text,
one can find the parallelogrammical construction for composition of motion and several
methods to construct tangents of some curves like conic sections and spirals.

In the part of the construction and description of the well-known Pascal spiral, he
shows how to find this kind of curve with another method (Figure 2):

Mais voici une des belles spéculations qui se puisse sur la description de
cette ligne [the cochlea], et par le möien de laquelle elle a été trouvée par
le sieur de Roberval. Soit supposé le cercle CEB, & l’intervalle CD comme
aux figures précédentes : du point C & de l’intervalle CD soit décrit le cercle
DG* ; (...) äiant tiré des touchantes GF à ce cercle, & du point B tiré des
lignes BF perpendiculaires à ces touchantes, que chacun des points F sera
dans notre lima̧on.

Figure 2: Roberval’s construction

2.2 Newton

In the secondary literature, one finds that Newton knew pedal curves. According to
B. Pourciau, in the 2nd edition of the Principia Mathematica Philosophica Naturalis,
Newton uses pedal coordinates to show the relationship between the 1

r2 law and a tra-
jectory. But, Newton is not explicit in this edition and Pourciau made the supposition
that Newton has effectively considered this kind of coordinates. And, in the following
editions this is the same thing. Moreover, in Newton’s Mathematical Papers edited by
Whiteside, there is no mention of this kind of pedal construction. But, at the end of
nineteenth-century, it is usual to demonstrate this relationship with pedal coordinates.



Figure 3: Maclaurin’s construction

2.3 Which status for pedal curves?

One can say that there is no status for pedal curves in Roberval’s works because he
considers these by the way. They are not in a central place but are linked with his work
on tangents, and he does not make any theory about it. The first major step about
this curve is made by a Scottish mathematician, Colin Maclaurin.

3 The 18th-century: the case of Maclaurin

Colin Maclaurin (1698–1746) become professor of mathematics in Marishall College
(Aberdeen, Scotland) at the age of nineteen (in 1717). His two first papers sent at the
Royal Society of London in 1719 are the first step of the recognition of his mathematical
skills. One of them, entitled Tractatus de curvarum constructione et mensura ; ubi
plurimae series curvarum infinitae vel rectis mensurantur vel ad simpliciores curvas
reducuntur, is the first exposition of pedal curves. These two papers are the bases
of his first main work, the Geometria Organica: sive Descriptio Linearum Curvarum
Universalis (1720). All that follows is extracted from this one.

His definition is the same that we have seen before (Figure 3). But, in the Geometria
Organica, he gives some properties of this kind of curve and proposes to classify the
pedal curves for a family of special curves.

To do so, he introduces an orthogonal frame with the pole S as center. The coor-
dinates of L are x and y. For any x and y, the quotient ẋ

ẏ
= m

n
exists with m and n

as finite quantities and ẋ is the fluxion (i.e. the derivative) of x. So he can give two
quantities, SP and SL as : SP = my−nx√

m2+n2 and SL =
√

x2 + y2.
His main tool is what we call now the pedal equation, the Æquatione radiali, it is

the quotient SP
SL

.
Since a pedal curve of a given curve is also a curve, it is possible to draw the pedal

curve of the pedal curve. So, he gives a construction of successive pedal curves, it is
the sequence of positive pedal curves. But the main difficulty is to find the inductional
relationship that enables us to define some pedal curves.

Nevertheless, from the radial equation of the first pedal curve, it is easy to deduce
the radial equation to the second one by the same kind of quotient.

He introduces the construction of an antipedal as follows. The antipedal of a curve
is a curve for which its pedal curve is the initial curve. He gives as we see below a
relationship between a curve, its pedal and antipedal curves.

Let’s give Maclaurin’s property:



Proposition 3.1. Given C ′ a pedal curve of centre S of the curve C. A simple geomet-
rical construction produces the pedal curve of C of centre F from the pedal curve C ′.
To do so, it is sufficient from any point P of C ′ to have the perpendicular of PS and to
F the perpendicular to PN . So the intersection point of these two perpendiculars, N ,
describes the pedal of F .

After that, he proposes some examples. The first one is the pedal curve of a circle,
he finds Pascal’s spiral and announces that it is an epicycloid (found by Nicole in 1707)
and it is a conchoid (circular base) too (by De la Hire in 1708). According to Loria,
Cramer was the first one to link these three kind of curves, but the real one is Maclaurin.
In fact, Cramer perused Maclaurin’s book. The second examples are the pedal curve
of conic sections (see below).

Maclaurin’s main interest is curves whose radial equation is of the form p
r

= rn

an

where p = SP and r = SL.
He proves the proposition:

Proposition 3.2. The radial equation of its pedal (with same centre) is p
r

= rn/(n+1)

an/(n+1) ,

one of the mth pedals is p
r

= rn/(mn+1)

an/(mn+1) and its mth negative pedal is p
r

= rn/(−mn+1)

an/(−mn+1)

So, its possible to classify curves according to the radial equations:

Circle of radius a and
the centre in the cir-
conference

p/r = r/2a n = 1

Right line with a dis-
tance a of the centre

p/r = a/r n = −1

Parabola (the 1st an-
tipedal of circle)

p/r = (r/a)−1/2 n = −1/2

Equilateral Hyperbola
(parameter a, centre is
the origin)

p/r = (a/r)2 n = −2

Cardioid (first pedal
of circle)

p/r = (r/2a)1/2

Lemniscate (The first
pedal of hyperbola)

p/r = (r/a)2

Two results for curves which are their radial equation as p/r = (r/a)n :

Theorem 3.1. (The rectification)
If L describes the curve and B a (start) point of this curve, and given P and N

respectively points corresponding in the pedal and antipedal curves. Then Arc(BP) =
(n + 1)(Arc(BN) + LN)

And

Theorem 3.2. (Curvature radius)
The curvature is an

n+1
× 1

rn−1 .



3.1 Which status for pedal curves?

These curves are central to his project. He proposes a systematic study and some
properties : rectification, curvature,..., he tries to classify curves and applies them to a
mechanical problem : Pourciau’s indication is more for Maclaurin than Newton.

4 The 19th-century

With the development of new geometries and several approaches for mathematical
artefacts description, the pedal curves are used in many ways. And a lot of papers
are entirely or partly devoted to pedal curves. During the first half of this century,
this kind of curve is re-discovered by some German mathematicians, especially Jakob
Steiner (1796–1863) who gave the German name : Fusspuncktecurve. Mostly during
the second half of century, more than 400 articles concern pedal curves in different
branches of mathematics : synthetic, differential geometry. And these curves are used
as problems in the classroom and in entrance examinations for prestigious schools like
the École Polytechnique.

4.1 In synthetic geometry

At the beginning of the nineteenth-century, following Poncelet’s and Chasles’ works,
some mathematicians reconsidered the nature of the pedal curve. According to them,
the pedal curve is the result of the composition of two transformations : After Pon-
celet’s works, some mathematicians have found that the construction of pedal curve is
equivalent to the composition of an inversion and a polar transformation.

During the first half of the nineteenth Century, some mathematicians like Jakob
Steiner with his Theorie der Kegelschnitte and his two articles in Crelle’s journal or
Quételet in relationship with the caustics problem, work on pedal curves as a compo-
sition of transformations. But, the last one does not see it as a specific curve and does
not extend it theoretically.

4.2 In differential geometry

Mostly during the second half of the nineteenth-Century, one can find some papers de-
voted to pedal curves. Some of them make the link with Maclaurin’s construction like
Haton de la Goupillière when he writes on curves with polar equation ρn = A sin nω
(Haton, 1876). There are a lot of articles from Germans like R. Sturm with his pa-
per, Über Fusspunkts-Curven und -Flächen, Normalen und Normalebenen, published in
Mathematische Annalen.

At the end of nineteenth century, some mathematicians view pedal curves not only
as curves but mostly as transformations. For instance, Sophus Lie considers pedal
transformations as a part of his Geometrie der Berührungstransformationen (1896).
Some years after, Gino Loria (1907) writes about the pedal transformation.

4.3 In teaching

Articles about this kind of curves are linked with teaching, and they are taught in
France, Germany, Italy and Great-Britain as exercises. In the Nouvelles Annales de
Mathématiques or Educational Times, one can see some exercises and problems focused
specifically on pedal curves. For instance, the seventh problem of the 1847 entrance



exam of École Polytechnique is ”trouver le lieu des projections d’un sommet d’une
section conique sur ses tangentes”. It is in the commentary of the resolution of this
problem given in the Nouvelles annales de Mathématiques that Terquem proposes to
name pedal curve into french ”podaire”.

In textbooks devoted on geometry, one can find some problems in which pedal curves
are important. For instance, at the end of the nineteenth-cetury, one can cite the fourth
problem ”Le sommet d’un angle constant c se meut sur une courbe directrice s pendant
qu’un de ses côtés enveloppe une courbe donnée σ1; trouver la courbe σ2 enveloppe de
l’autre côté.” (Aoust, 1873, p. 171.). Aoust gives a relationship between caustic and
pedal curves.

To conclude this part, one can say that pedal curves are present in all type of geome-
tries without any central role, much like other tranformations. To summarize, pedal
curves are significant enough to merit a specific field in the Répertoire bibliographique
des sciences mathématiques (1894-1912): 02qα Podaires et podaires négatives.

5 Pedal curves and Geogebra

We propose two short examples to show how to concile history of mathematics, old
sources and dynamical geometrical software. The main interest of this kind of software
is to integrate dynamic views with old problems and to open new interpretations in the
creation process from mathematicians like Maclaurin or Newton.

The first is to exploit an extract of Maclaurin’s Geometria Organica in which he
gives different cases of the pedal curve of conic sections. And the second one is from
the Nouvelles Annales in which a method is given to use pedal curves to trisect angles.

5.1 Pedal curve of conic section

Let us follow Maclaurin in his examination of pedal curves of conic sections:

Pedal curve of hyperbola Pedal curve of parabola Pedal curve of ellipse

The three examples come from Geometria Organica, which Maclaurin split into
three cases. In each case, he determines the situation with respect to the pole. With
Geogebra, it is extremely easy to rediscover each case with a simple movement. For
instance, for the pedal curve of the parabola, Maclaurin makes a relationship with the
Newtonian description of some third order curves.

5.2 Angle trisection

The trisection of angles is an old problem: is it possible to trisect any angle only
with compass and straightedge? From ancient times, mathematicians tried to resolve



this one, but with only compass and straightedge, it is an impossible problem. This
was demonstrated in the 19th-century with the works of Abel or Galois.

Here is an interesting use of pedal curve :

M. le docteur Toscani, professeur de physique au lycée de Sienne (Toscane),
fonde la trisection sur le lieu géométrique d’une podaire du cercle. Soit C le
centre et V un point fixe, extrémité de l’arc à trisecter. Prolongeons le rayon
CV d’une longueur V P = CV ; projetons le point P sur toutes les tangentes
au cercle; T étant le point de contact et P ′ la projection correspondante de

P , lorsqu’on aura V P ′ = V T , alors�V P ′P = 1
3
�CV P ′. (Poudra, 1856)

Figure 4: Trisection of angle
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– Aoust, L.-S., 1873, Analyse infinitésimale des courbes planes..., Paris: Gauthiers-Villars.

– Haton de la Goupillière, J.-N., 1866, ”De la courbe qui est elle-même sa propre podaire”,
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