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ABSTRACT

This paper examines the question to what extent cryptography and its history can be used
to promote the idea of mathematics as a living science in mathematics education. Our in-
vestigations are substantiated in the context of the RSA cryptosystem and its mathematical
background. Cryptography proves to be a suitable example for pointing out the development
of the mathematical sciences triggered by development outside of mathematics – in this case
the invention and usage of computers. The nature of problems solved and still open can
broaden the students’ view of mathematics as a living science that is still developing. The
given considerations may be used as a framework for a teaching module about RSA as well
as a subsequent occasion to reflect upon modern cryptography (and mathematics) for those
who already know RSA.

1 Introduction

A project aimed to bring current mathematics into schools forms the background of the
considerations presented in this paper. The teaching experiment corresponding to the
project is an additional course in cryptography, students choose as part of their Abitur1.
The course is a two-semester course consisting of weekly lessons a 3 x 45 min lessons,
i.e., 135 minutes each week. The course was tested in two high-schools (gymnasium) in
Berlin with 12 and 14 participants, respectively. The high-school students were about
18 years old and had no prior knowledge of cryptography, of number theory, or of
congruences in particular. The teaching unit outlined in this paper is extracted and
redesigned referring to the realisation and reflection of the original teaching experiment.
It comprises 10 up to 12 units a 90 minutes and can be taught independently, e.g. as
workshop.

Large parts of the German standard curriculum (e.g. [11]) do not extend beyond
the scientific knowledge of the 19th century. Modern elements of mathematics are often
limited to probability theory and some elective parts, that are not mandatory for all
students. Teaching cryptography can contribute to this issue in different ways. Still
“. . .mathematical education must follow, at least to some degree, what happens in
mathematical research”, as Lovász reasons in his article “Trends in mathematics: How
they could change education?”[8]. He uses especially the term algorithmic mathematics
(opposite to structural mathematics) to characterise the development in many branches
of mathematics and applications through the use of computers: “it enriches several
classical branches of mathematics with new insight, new kinds of problems, and new
approaches to solve these”. Mathematical activities in class that illustrate this, hence

1general German qualification for university entrance



give an insight into (the development of) modern mathematics in general. Thus, in this
paper RSA is analysed in order to identify such possible ideas, techniques or algorithms.

As an example for modern cryptography, RSA requires only little mathematical
background (predominantly elementary number theory) in order to be understood.
That does not only refer to the cryptosystem itself, but to the process of the corre-
sponding development as well. In contrast to the often found image of mathematics,
the development of modern cryptography demonstrates that mathematics has no fixed
structure or just needs some completion in order to give some helpful applications to
other sciences. It is an example of how the development in mathematics is very often
triggered by questions posed by other sciences, technological advances, or even social
developments.2

In order to shift the focus on to the process of development as well as the RSA-
algorithm itself, the following outlined teaching unit concentrates on the question Why
did it take more than 2000 years to invent RSA? First RSA is motivated by a historical
description of a classical problem of cryptography. Second we introduce RSA and answer
the posed question. Third the influence of computers on the development of RSA is
shown in more detail. Finally, aspects that may be helpful to broaden the students’
view of mathematics are highlighted.3

2 Historical and practical background – Motivation

Cryptography has been used for several thousand years [1]. Some well known ciphers
used in different centuries are named in fig. 2. They can be found in most popular and
didactic literature about cryptography or cryptography in the classroom. However, all
ciphers up to the 1970’s are connected by one significant problem: the key exchange
problem.

An illustration of the problem is a letter
of an American soldier imprisoned by the
Japanese sent to his family during the Sec-
ond World War (fig. 1). The written text
hides additional information that can be
found by reading only the first two words in
each line. But there was no way to trans-
mit this information – the key – separately
and securely without the knowledge of the
Japanese. In this case the hidden message
was puzzled out.

Obviously, for every day use of cryptog-
Figure 1: Postcard of an American soldier [7]

raphy, this is not an option. Therefore until 30 years ago, information was encrypted
solely according to the following principle. A message M is encoded by an invertible

2An example is physics and its influence on the developments of calculus (mechanics) in the 18th

century, which also appears in teaching practise. Other examples are functional analysis (quantum
mechanics) or differential geometry (general theory of relativity).

3In the opening plenary of ESU-6 Jankvist presented an empirical study about the use of “history
as a goal” in mathematics teaching. One of his teaching units is about RSA. Therefore some of the
results are quite related [5].



parametric function E into a cipher text C = EK(M). The parameter K is called the
key and needs to be kept secret. The recipi-
ent decodes / decrypts the message with the
inverse function D so that DK(C) = M .
The parameter K for the construction of
E and D must be transmitted via a secure
channel (personally in advance, by a mes-
senger, etc.).

Alice: plaintext
EK

�� ciphertext

send message
���
�
�

Bob: plaintext ciphertext
DK

��

Figure 2: Data exchange with classic cryptogra-
phy

Secure data exchange between strangers over an insecure communication channel
is not possible this way. To overcome this problem, a cryptographic revolution was
needed. With the development of the Internet this became of paramount importance
as in principle all information sent over the Internet can be intercepted or monitored.

The revolution in cryptography that overcame the key exchange problem started in
1976. Diffie and Hellman published the idea of an algorithm including a pair of different
keys instead of one, Ke for encryption and Kd for decryption [3]. From the knowledge
of one of the keys, one cannot derive the other. Therefore, Ke can be transmitted via a
public channel (hence the name: public key algorithm). An algorithm that implements
this idea was published by Rivest, Shamir, and Adleman in 1978 [10], and is known as
the RSA cryptosystem.4 This leads to the following leading question for the teaching
unit:

3 Why did it take more than 2000 years to invent RSA?

The development of public key cryptography can be seen as long term problem solving.
To underline the similarities to problem solving in the classroom the answer is divided
into three parts. We need to know, what is so revolutionary about Diffie’s and Hellman’s
idea and later on how it was implemented. This leads to the principle of RSA, but covers
less than 90% of the answer (considering the time interval of more than 2000 years).
Practical aspects will complete the answer and illustrate how external driving forces
influence development in mathematics.

It is less trivial than it seems to start thinking about a pair of keys instead of one
key. For a function with the key parameter K it is

DK(EK(M) = M.

But how to find a suitable function, that offers different keys for encryption and de-
scription

DKd
(EKe(M) = M?

Suitable means especially hard to invert even if one of the keys is known. To illustrate
the difficulty, students were given the following exercise.

Exercise: Find candidates of suitable functions. Create a list of different
kinds of functions and their inverses. Which of them fulfil the criteria of
being difficult to invert and fast to calculate?

4Independently from Rivest, Shamir, and Adleman the algorithm was found but not published
for military reasons by Clifford Cocks in 1973. In contrast to the three authors above Cocks only
needed one day to find a suitable algorithm, when he got to know the idea of the public key algorithm,
James Ellis wrote down in 1969 (and Diffie and Hellman 1976) [12]. This fact illustrates that even in
mathematical science problem solving is a very individual and not predictable process.



Some well-known functions and their inverses are subsequently listed.

f(x) = x + k f−1(x) = x + (−k)
f(x) = k · x f−1(x) = 1

k
· x

f(x) = xk f−1(x) = x
1
k

f(x) = kx f−1(x) = logk x

Usually students define f over real numbers (or maximum possible intervals in �).
If students do so, they soon recognise that none of the known functions are useful
candidates for cryptographic requirements.5

Additionally, the function needs to be easy to calculate and without rounding errors.
Therefore, more complicated functions are not an option (e.g. including trigonometric
functions). But what happens if you change the domain?

Comparing known possible domains will soon lead up to natural numbers or integers.
Problems of calculability guide to residues modulo n. Thus, instead of determining
functions within the domain of rational or real numbers, students investigated the
same functions of residues modulo n. Residues behave with respect to addition and
multiplication like integers, but differently concerning division and exponentiation. The
second attribute gives the candidate for the function we are looking for. Compared to
working with natural numbers it is quite different to extract the inverse of a residue
which has been raised to a higher power, as the following example shows.6

Example: 197 mod 55 = 24 and 24
1
7 mod 55 �= 19, however 2423 mod 55 = 19. As

the example shows the inverse exponent 23 is not obvious from knowing the exponent
19. Background of finding exponents to invert exponentiation is Euler’s theorem: For
a and n relatively prime and ϕ the Euler function7 it is

aϕ(n) ≡ 1 mod n.

By multiplication with a follows

aϕ(n)+1 ≡ a mod n

and
akϕ(n)+1 ≡ a mod n.

for integers k. The last congruence can be used to find the pair of keys Ke and Kd we
are looking for. If there are numbers e and d that give the exponent kϕ(n) + 1 those
are the pair of keys.8 Because of

a ≡ akϕ(n)+1 ≡ aed ≡ (ae)d mod n.

Now e, n can be published, d remains secret. So everyone, e.g. Alice (sender) is able to
encrypt a message a using the public key (e, n):

ae mod n = c.
5Additionally the concept of functions is supplemented explicitly.
6A detailed teaching unit that follows the differences of operations between � and �/n� to identify

possible functions useful for cryptography is described in [9].
7ϕ(n) = #{0 < t < n | gcd(t, n) = 1}.
8Obviously, e (and d) is relatively prime to ϕ(n). Therefore gcd(e, ϕ(n)) = 1 and there exist u, v ∈ �

such that e · u + ϕ(n) · v = 1 (Bézout’s Theorem). The integer u gives the factor d. Considering the
example above it is 7 · 23 mod ϕ(n) = 1.



The cipher text c is decrypted by Bob (recipient) by using the private key (d, n):

cd mod n = a.

Why is this secure? Why can’t anybody calculate d with the knowledge of n and e?
In practice e is chosen randomly with gcd(e, ϕ(n)) = 1. The number d is calculated by
using the extended Euclidean algorithm with the input values of ϕ(n) and e.

That is possible for everyone, but only if ϕ(n) is known.9 To calculate the value
of ϕ(n) = n

∏
p|n (1 − 1/p) the factorisation is needed. That means, to make RSA

secure the modulus n is chosen to be hard to factor. For RSA this is achieved by
choosing n to be a product of two large primes.10 The resulting procedure for the RSA
key generation, encryption, and decryption is given in the box below together with an
illustrating example.

Procedure of RSA Example
Key generation

Multiply large primes p and q p = 5, q = 11
n = p · q n = 55
Compute ϕ(n) = (p − 1)(q − 1) n = 40
Find integers11 e, d : ed ≡ 1 mod ϕ(n) e = 7, d = 23

Encryption of the message a = 19
c = ae mod n 197 mod n = 24

Decryption of the message c

a = cd mod n a = 2423 mod 55

Figure 3: RSA – Key generation, encryption and decryption and
illustrating example

Up to this point the mathematical background includes the Euclidean algorithm,
modular arithmetic, and Euler’s theorem (see fig. 4). Regarding the origin of the math-
ematical background the initial question can be changed to Why did it take another
200 years to invent RSA? 12

> 100 B.C.
Caesar cypher 

> 500 B.C. 
Scytale

>375 B.C.
Euclidean 
algorithm

16. century 
Vigenère

1930s
Enigma

18. century
Euler's 
Theorem 

1978 public key
cryptography

Figure 4: Timeline – History of cryptography and mathematical background of RSA

9A proof that the knowledge of the prime factorisation of n is equivalent to the knowledge of the
private key can be found in ([2], p. 141).

10Obviously the factorisation is easy to calculate, e.g. by dividing n by all primes up to
√

n. Therefore
hard to factor refers not to the existence but the practical way to find the factorisation, because of the
number of steps and calculation time of the algorithm, which is executed by computers.

11While introducing RSA the Euclidean algorithm is not necessary. For small primes like this trial
and error works too.

12Depending on the curriculum Fermat’s little theorem can also be considered. For n = p ·q, p and q
primes, the proof of RSA can be reduced to Fermat’s little theorem. The elementary proof of Fermat’s
little theorem is more accessible to work with in class than Euler’s theorem. The question to be posed
would then be Why did it take another 350 years to invent RSA?



The answer can be found rather in the practical realisation of RSA than the formal
description above.

The advances in technology and availability of computers were the crucial factors for
the development of RSA for two reasons. First, the predominant historic use of cryp-
tography had been the exchange of military secrets between two parties. In contrast,
the use of computers increased, in particular, the exchange of sensitive data over multi-
party communication networks, especially the Internet. To overcome the key exchange
problem became a public concern, not only a military one.13 Secondly, Euler’s theorem,
or the Euclidean algorithm were already valuable instruments in mathematics. But the
use of computers made them practically applicable.
Thus, computers provided both the need for RSA as well as the means.

Similar developments can be found in different parts of mathematics. Computational
mathematics, in particular numerical methods and discrete mathematics, has increased
in importance in recent decades. A major contribution of computers consists in shifting
problems of computability to the development and implementation of suitable (and in
particular efficient) algorithms. Algorithm design has always been a classical activity in
mathematics, but computers increased their visibility and respectability substantially
[8]. On the other hand, computers introduced new problems, such as the need for data
compression (information theory) and more philosophical questions, e.g. the nature of
mathematical proofs [4].

4 Technology in Mathematics

Students use lots of algorithms in maths, e.g. multiplication algorithms and Gaussian
elimination. Even procedures like identifing extreme values can be interpreted as an
algorithm. Instruments like graphic calculators, spradsheed software, and CAS play an
important role in school, as to visualise and perform individual calculations. Only a few
algorithms are used to recognise the special values or chances (and limits) offered for
mathematics and mathematics education by informatics. Therefore in the following we
focus especially on these values, chances and limits when dealing with the algorithms
that are integral part in the realisation of RSA.

The algorithms cover very old mathematics (Euclidean algorithms) as well as modern
ideas (probabilistic algorithms). Developing and analysing the RSA related algorithms
utilises classic problem solving strategies as well as computer oriented activities like
analysis of running time and space. The old mathematics, its implementation, and
practical limits especially of factorisation give students exemplary insight into mathe-
matical development that has still not come to an end.

As an initial exercise students build their own example of RSA using primes as large
as possible.14 Depending on the used computer algebra system and knowledge about

13Because of more involved scientists this includes not only more chances to solve cryptographic
problems but also more chances to verify the security of published ciphers as well. Today cryptography
includes lots of applications for everyone’s purpose, e.g. authentication of communication participants,
the verification of the integrity of transmitted data and more – hidden in process of onlinebanking,
software updates, mobiles etc.

14The term large depends on the CAS available. E.g the Voyage2000 only knows the Mod(a,b)
command to calculate a mod n but no PowerMod(a,b,c) to calculate ab mod c stepwise (accordingly
to the square and multiply algorithm). Because of the number of digits for internal calculation the
limits of calculability were found for primes with 3 digits and exponents higher than 200.



the corresponding/respective CAS commands problems arise by . . .

(i) . . . finding e and d (extended Euclidean algorithm),

(ii) . . . rising a to the power of e and more often
. . . rising c to the power of d (square & multiply algorithm),

(iii) . . . Factorisation of n to break RSA and

(iv) . . . very interestingly: how to find primes (Miller Rabin primality test).

It is advisable to introduce the corresponding CAS commands later to motivate the
algorithm development. But even if commands are known, the comparison between
calculation by CAS and “by hand” leads to questions about the nature of the (black
box) command (difference of calculation by hand and computer? limits of exact calcu-
lations?).

In the following it is outlined how the algorithms were introduced and which aspects
were given priority.15

(i) Euclidean algorithm

This very old algorithm can be developed by the students and may be useful to introduce
pseudo code.16 Students have to describe the Euclidean algorithm in a general way and
to prove it afterwards.

Exercise
How can we compute the gcd of natural numbers a and b without knowing
their factorisations?
If a > b, then:

gcd(a, b) = gcd(a, a − b). (∗)

a. Use this fact to compute gcd(322; 98) in steps.
b. Give a recipe for doing this in general.
c. Prove (*).

In the next step students get the pseudo code description and have to connect their
written text results to corresponding parts in pseudo code. This illustrates the strong
connection between textual solutions and programming solutions and calls attention to
missing or mistakable parts (example, see fig. 5).

15According to the students previous knowledge and not to cover up the mathematical essence the
algorithms are described in pseudo code only. As a consequence we don’t distinguish between the
mathematical object algorithm and its implementation as a computer program, which depends on the
machine and/or on the programming language [8].

16Pseudo code is a compact and informal description of a computer programming algorithm, aug-
mented with natural language descriptions of the details, where convenient, or with compact mathe-
matical notation. It is easier for students to understand pseudo code than conventional programming
language code and omits details that are not essential for the understanding of the algorithm. Pseudo
code is commonly used to describe algorithms independently from individual programming language.



“The small number is subtracted from the greater
one, thus a − b, this gives a natural number c.
This step is repeated. So, it is calculated c− b or
b − c. This is repeated until one of the numbers
is zero. The number different from zero is the
gcd. When a equals b it doesn’t mind which one
is subtracted from the other one.”

if a = 0
return b

while b > 0
if a > b

a := a - b
else

b := b - a
return a

Figure 5: Textual description of the Euclidean algorithm (Natalie, 15 years) and pseu-
docodedescription

(ii) Square & multiply algorithm

The exercise for the square & multiply algorithm can be made the other way around.
After testing alternatives to simple multiplication by using power laws, students can be
given the pseudo code description of the square and multiply algorithm.

Exercise
a. Compute 419 =: am using the given algorithm.
b. Try to find own examples that need less multi-

plications than the algorithm below.

Power := 1
while m > 0

if m uneven
Power := Power a
m := m-1

else
a := aa
m := m/2

return: Power

In doing so the students attention is forced to the different concepts of variables
used in maths and computer sciences.

(iii) Factorisation of n

The issue of security of RSA is useful to confront the students with limitations of
algorithms. The initial question is the following.

Exercise
Decipher the cipher text c = 74273, public key n = 77057, e = 211.

Obvious approach is to factorise the modulus n and follow the steps of the standard
key generation using p and q (fig. 3). To study the limit of this approach, students can
experiment with (their own) moduli like
n = 942876191136657658379477430933277830167219 and

n = 21359870359209100823950231843412185438350340633004275483722216910246
. . .

99701104537360439015839606479.
Using Mathematica it took 4 seconds to factorise the first modulus. The factori-

sation of the second one started during the lesson and was interrupted one week later
(and would have needed more than 100 additional years on the same computer). After
testing further examples the found exponential connection between factorisation time



and the number of digits may indicate that it is not just a problem related to the com-
puter equipment used.17 It shows that even if there is an algorithm available (in this
case to factorise natural numbers) it is not certain that it produces results efficiently.

A trickier didactic problem is to convince students of the security of an algorithm
that depends on the non-existence of a practicable solution to a problem (in this case
the factorisation of integers), especially if there is no proof of this non-existence.

There are other methods than
simply dividing all integers from 2
up to square root n (e.g. Quadratic
sieve ([2], chapter 10). But none
of them are fast enough to be a
satisfying alternative and to ques-
tion the security of RSA.To illus-
trate this and to compare it with
the process of simple division, the
software CryptTool18 was used.

But not to know a suitable al-
gorithm is no proof that such an
algorithm does not exist. Thus
the students are confronted with an
open question: is there an efficient
way to find prime factors of large
numbers? Similarly, is it possible
to decipher RSA directly without
factorisation?

Figure 6: Comparing different algorithms to factorise
large numbers using CrypTool.

(iv) Miller Rabin primality test

At the first glance the factorisation problem seems very similar to the problem of finding
primes. But the latter can be solved very quickly in practice. This is at the cost of
absolute certainty, because the algorithm of Miller Rabin is a probabilistic one. That
is an interesting and rare connection between number theory and probability [6].
On the basis of the given literature the principle of the primality test was presented
and complemented by exercises by a group of students. This was done in the context
of six possible specialisations subsequent to the introduction of RSA.

17The key length of the modulus n used today is 1024 or 2048 bits. Numbers this large are secure
against factorisation. Conceivable development in computer speed for the next 10-20 yearsThat is
considered there. Therefore, its no option just to use a “better” computer (CAS instead of a calculator,
100 CAS instead of one CAS, super computer instead . . . ). Computers worthy of this task have not
been constructed yet. Improvement that questions RSA (and other modern ciphers beyond extension
of the key length where appropriate) is foreseen when the quantum computer is available. This is not
yet in sight.
An impressive example of the different meaning of the term large when speaking about factorising
large numbers can be found in [13].

18Free software to demonstrate and analyse classic and modern ciphers. Available in English, Ger-
man, Polish, Spanish and Serbian.



5 Conclusion

The answer to Why did it take more than 2000 years to invent RSA? as presented
above adds to knowledge and concepts from early school years including especially the
key mathematical concept of numbers, functions and algorithm. Also it introduces
actual development in mathematics. This actual development often gives contrast to
the students’ image of mathematics. It applies especially to the factorisation of natural
numbers n, as the factorisation of n . . .

– . . . starts to be a problem, if n is large. In contrast to the simple problem solved
in primary school using prime factors.19

– . . . supports a sparsely used approach in students’ school experience. Now the
lack of knowledge can be utilised to solve a 2000 year old problem.

– . . . is an integral part of an algorithm of which billions of people benefit every day
without any proof of its security.

Or more from a student’s point of view: Even the “well known” natural numbers are
of scientific interest and far from being completely understood.20 Even more amazing:
the inability to solve a problem is useful.

The last aspect illustrates how mathematics develop much in the same way as natu-
ral sciences do, and that mathematical development does not take place in an enclosed
environment but in mutual interaction with the surrounding world. In this case it was
the practical problem of key exchange from outside of mathematics and the new per-
spective through the use of computers that made already valuable instruments (like
the Euclidean algorithm or Euler’s theorem) practically applicable and accessible. On
the other hand, the present algorithm is inherently questionable, because its security is
substantially based on practical reasons (length of the modulus n and some parameters
of p and q to avoid possible attacks) and not on a mathematical proof. Therefore,
teaching cryptography provides various links to possibly widen the students’ view of
mathematics and present mathematics as a living science. Summed up: mathematical
history is an ongoing one, taking place today just like yesterday.
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