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Abstract

In the following text we will study one aspect of the problem indicated in its title: How can
we express the fact that space has exactly three dimensions using only the tools of classic synthetic
geometry?

Space in Euclid’s “Elements”

Solid geometry is dealt with in the books eleven to thirteen of Euclid’s “Elements” (∼–300).
A definition of space is missing in Euclid’s text, we learn only the following:

“A solid is that which has length, breath, and depth.
An extremity of a solid is a surface.”

(Definitions 1 and 2 of book XI, we cite from Heath’s edition (Heath, 260)). It is even
said that the classic Greek language had no term for our space. Thus it is not surprising that
Euclid did not define it. But there is an obvious question: Can Euclid avoid any reference to
space in his work? Because he is considering solids there must be at least three dimensions,
but in principle there could be more! So we may ask: Are there propositions in Euclid’s
books which depend on the fact that space has exactly three dimensions? To be sure: this is
a question asked from our modern point of view. In Euclid’s work space remains negative1

in the sense that it is only used implicitly.
The answer to this question is “yes” — we only have to look at the proposition 3 of

book XI:

“If two planes cut one another, their common section is a straight line.”

Obviously this is a statement about the position of two planes in space, so its proof rests
not only on properties of the plane or the straight line (like “If a straight line and a plane
have two points in common, the line is completely contained in that plane”).

Many of the ideas contained in this article were developed during a stay at the Archives Henri Poincaré
(Université Nancy 2) in the spring of 2007. I want to thank G. Heinzmann, Ph. Nabonnand and Ph. Lombard
for their kind reception.

1This expression is taken from the history of arts, cf. Kern 183, 153.
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Euclid’s proof goes like that:

Let the line DB be the section of the two given planes AB and BC. We want to show
that DB is straight. “For, if not, from D to B let the straight line DEB be joined in the
plane AB, and in the plane BC the straight line DFB.

Then the two straight lines DEB, DFB will have the same extremities, and will clearly
enclose an area: which is absurd.” (Heath, 276)

The most important consequence of XI, 3 deduced by Euclid is to be found in theorem 5
of book XI: “If a straight line be set up at right angles to three straight lines which meet one
another, at their common point of section, the three straight lines are in one plane.” (Heath
1956, 281).

Here is the proof by reductio ad absurdum given by Euclid. Suppose that BD, BE are in
the plane of reference but BC not. Because AB and BC meet in B there is a unique plane
containing them (XI,2). So the two planes through BD, BE and AB, BC have the point
A in common. By XI, 3 their section is a straight line passing through this point. Let it be
BF . Because AB is orthogonal to the two straight lines BD and BE, it is orthogonal to
every straight line in the plane of BD, BE passing through A. In particular it is orthogonal
to BF (recall that this line is in the section of the two planes). So in the plane of AB, BC
there are two straight lines — BC and BF — which are orthogonal to AB passing through
B. In other words, the angle ABF would be equal to the angle ABC. That is not possible.2

So we may state that the fact that space has three dimensions is equivalent to the fact
that there are only three straight lines passing through a point and being orthogonal to each
other. To us this seems to be a very natural characterization. But this is due to the fact that
we are familiar with analytic geometry. From the point of view of classic synthetic geometry
this characterization is not very useful because it is operational.

Some later improvements

For the following we notice that Euclid presupposes that the section of two planes is a line.
If asked why he did so he could quote the second definition above: The extremity of a plane
is a line.

But it is possible to simplify Euclid’s argument in this respect. A first possibility is
indicated in the following citation of Pierre Hérigone (1634):

2The theorem XI, 3 is used in book XI in the proofs of the following theorems: 5, 6, 7. 13, 14, 16, 17 und
38 (cf. Neuenschwander 1974, 93f).
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Hérigone used a special symbolism to write down his proofs. It is not to difficult for us
to understand it. The points E and F are in the section of the two planes so is the straight
line EF joining them (EF is in the plane AB because E and F are in that plane, EF is
in the plane CD because E and F are in that plane too; cf. above). Hence the section is a
straight line.3

Another type of argument is to be found in Legendre’s “Eléments de géométrie” (1794):
Let’s suppose that the points E, F and G are in the section and that they are not situated
on a straight line. Then the intersecting planes must be identical because three points which
are not collinear determine exactly one plane.4

We may use this to answer the question raised in footnote 4: if there is a point in the
section outside the straight line EF , then the two intersecting planes are identical and every
point of them is in the intersection. So in combining the argument given by Hérigone with
that given by Legendre we get the following theorem: If the section of two non-identical
planes contains two points, then this section is exactly a straight line.

This is nice. But there is an obvious question: Can we reduce the hypothesis of our
theorem to “there is one point in the section”? The answer is “yes”: Christian von Staudt
was the first (to my knowledge) to formulate this. In his “Geometrie der Lage” (1847) he
states:

“20. . . . two planes, which pass through one and the same point, cut one another in a
straight line which passes also through that point and outside of it there are no common
points of the two planes.”5

Von Staudt gives no proof of his nice theorem. We find such a demonstration about 20
years later in a book written by Richard Baltzer “Elemente der Mathematik”. Baltzer’s book
was a widely used compendium of the contents of school mathematics in his time (school is
here to be understood as “German Gymnasium”); it is valuable not only for its mathematics
but also for its historical remarks. In particular Baltzer introduced non-Euclidean geometry
to the German public by his book.6

3It would be more precise to state that the section contains that straight line. It is not proven that there
are no points in that section outside the straight line EF . We come back to that question soon.

4Cf. Euclid XI, 2.
5“20. . . . zwei Ebenen, welche durch einen und denselben Punkt gehen, schneiden sich in einer Geraden,

welche ebenfalls durch jenen Punkt geht, außerhalb aber die beiden Ebenen keinen gemeinsamen Punkt mit
einander gemein haben.” (von Staudt 1847, 8)

6To be precise we must state that this is true for the second edition of its second part treating geometry
(1867). For more details of the importance of Baltzer’s book one may consult the book Voelke 2005, 56–57.
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Here is Baltzer’s proof7:

Let A indicate the point of intersection of the planes p and p′. In p′ we take two straight
lines passing through A with points B and C, D and E (cf. the drawing above). Now the
points B and E are both in p′, so we can join them by the straight line BE in p′. Because
B is above p and E below the straight line BE has to intersect the plane p in a point F . So
F is an another point of the section of the two planes. Therefore that section contains two
points and we can continue the argument as above.

Let us pause for a moment and think about the history we have learned. There was
a considerable progress in sharpening the hypothesis of our theorem reducing it from the
existence of a whole line to that of a single point. But there was no real progress in the
axiomatic foundation of solid (nor of plane) geometry. Baltzer, Legendre and all the other
geometers used Euclid’s axioms and postulates without completing them — or even worse!8

The solution
The first mathematician doing so was Moritz Pasch (1882). In his “Lectures on recent
geometry” (1882) Pasch gave an axiomatic base for projective geometry. In particular he
formulated for the first time in the history of geometry a complete set of axioms of incidence,
order and congruence9. From our modern point of view his treatment is complicated by his
empiristic philosophy of geometry forcing him to built up the projective space by enlarging
step by step a finite range. In the section devoted to planes Pasch introduces the following
axiom (he called it “Kernsatz”): “If two planes P , P ′ have a point in common, one can
designate another point which is in one plane with all the points of P and with all the points
of P ′.” (Pasch 1926, 20)10 Following Pasch this is a simple matter of fact — we learn it by
our experience. The idea of Pasch was taken up by Hilbert in his now famous “Foundations
of geometry”. He uses two axioms to characterize the three-dimensional space: I,7. “If two
planes α, β have a point A in common, then they have a least one other point B in common.”
and I, 8 “There are at least four points which are not in a plane.” (Hilbert 1972 , 4)11 He
comments on these two axioms: the first expresses the fact that space has not more than
three dimensions, the second that it has not less than three dimensions. It is possible to state
that Hilbert solved the problem to characterize three-dimensional space with the means of
synthetic geometry.

7Heath ascribes the proof given here to Killing (1898), 43.
8Legendre’s axioms are far less complete than Euclid’s for example.
9The axioms of incidence and the axioms of order are more or less the same as the “graphic” properties

which were discussed by Poncelet (in difference to the metric properties).
10“III. Kernsatz. — Wenn zwei ebene Flächen P, P ′ einen Punkt gemeinsam haben, so kann man einen

anderen Punkt angeben, der sowohl mit allen Punkten von P als auch mit allen Punkten von P ′ je in einer
ebenen Fläche enthalten ist.” (Pasch 1976, 20).

11“I 7. Wenn zwei Ebenen α, β einen Punkt A gemein haben, so haben sie wenigstens noch einen weiteren
Punkt B gemein. I 8. Es gibt wenigstens vier nicht in einer Ebene gelegene Punkte.” (Hilbert 1972, 4)
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There is still a little problem: the axiom I, 7 is not very convincing — it is not obvious.
Thus the question is: Can we replace Hilbert’s axiom by a statement which seems to be
evident and obvious? We can do that and the answer was proposed implicitly by Baltzer’s
proof of von Staudt’s theorem. This proof uses the “fact” that space is separated by any of its
planes. For this reason the two resulting half-spaces are disjoint and the straight line joining
points in different half-spaces cut the plane in a point whereas the straight line through
two points in the same half-space doesn’t meet the plane. We find this axiom in a slightly
modified form in A. N. Whitehead’s “The axioms of descriptive geometry” (1907):

“For three-dimensional geometry two other axioms are requested: XV. A point can be
found external to any plane. . . . XVI. Given any plane p, and any point A outside it, and
any point Q on it, and any point B on the prolongation AQ, then, if X is any other point
[on the straight line through A and B], either X lies on the plane p, or AX intersects the
plane p, or BX intersects the plane p. . . ”

Axiom XVI secures the limitation to three dimensions, and the division of space by a
plane. It can also be proved from the axioms that, if two planes intersect in at least one
point, they intersect in a straight line.” (Whitehead 1907, 6)12

As we have seen it is possible to proof XI, 3 on the base of this axiom. So our history has
come to an end in the sense that we have found the place of Euclid’s theorem in a complete
axiomatic system including a satisfying formulation of the axiom. To the formalistic math-
ematician the last remark is meaningless but in real history of mathematics it is important.
Once again we get a hint that the formalistic point of view is not adequate to understand
history!
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