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Abstract

We ascribe to the Euclidean Fifth Postulate a genuine constructive role, which makes it absolutely
necessary in the parallel construction. In order to do this, we provide a reconstruction of the general
principles of a Euclidean construction of a geometric property. As a consequence, the epistemological
role of Euclidean constructions is revealed. We also give some first philosophical implications of
our interpretation to the relation between Euclidean and non-Euclidean geometries. The Bolyai
construction of limiting parallels is shortly discussed from the reconstructed Euclidean point of view.

1 The standard interpretation of the Fifth Postulate
From Proclus up to our days a hermeneutic tradition regarding the Fifth Postulate (FP)
has been developed, which we call the Standard Interpretation (SI). According to it, the
Euclidean FP, though differently formulated, actually asserts that through a given point
outside a given straight line at most a unique parallel straight line can be drawn to it.
This formulation, commonly known as Playfair’s Axiom (PA), is logically equivalent to the
original FP. Since a parallel line exists independently from PA, addition of PA establishes
the existence of exactly one such parallel. Expression of the SI predominance is that PA was
made the standard form of the FP in the axiomatic presentations of Euclidean geometry.

In order to describe SI and its shortcomings we give briefly the Euclidean line of presen-
tation of the parallel construction in a formal scheme compatible to our later reconstruction.

If a, b and c are Euclidean coplanar straight lines, we define the following geometric
properties: T (a, b, c) iff c falls on a and b, Qb(a) iff a is parallel to band Pb,c(a) iff T (a, b, c)
and c makes the alternate angles equal to one another. The first major step in the Euclidean
parallel construction is Proposition 27 of Book I of the Elements.

Proposition I.27. (Criterion of Parallelism): Pb,c(a) → Qb(a).
Next proposition (Proposition I.28) contains two more criteria of parallelism reducible to

the one of Proposition I.27. In Proposition I.29 the inverse implication is established.

Proposition I.29: Let a, b, c, such that T (a, b, c), then Qb(a) → Pb,c(a).
In Proposition I.29 Euclid uses the FP for the first time. Its original formulation is the

following:

Euclidean Fifth Postulate: If T (a, b, c) and c makes the interior angles less than two right
angles (2 ), then a, b, if produced indefinitely, meet on that side on which are the angles less
than 2 .
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Proposition I.29 is required in the proof of Proposition I.30, a proposition crucial for the
development of the SI, since it proves the uniqueness of the parallel line. This result though,
is not included in the Elements.

Proposition I.30: If Qb(a) and Qb(c), then Qc(a).
Next proposition is the construction of the parallel line.

Proposition I.31: Construction of a straight line a, through a given point A outside line
b, such that Qb(a).

Its proof consists in the construction of lines cand a, such that, Pb,c(a). Then, by Propo-
sition I.27, Qb(a) holds too.

Within SI the construction of Proposition I.31 requires only Proposition I.27 therefore,
it is independent from the FP. So, it could be placed right after Proposition I.27 and before
Proposition I.29. This accepted independence of the FP from the parallel construction is one
of the reasons why mathematicians, before the emergence of non-Euclidean geometries, used
to consider the FP as a theorem rather than as a Postulate.

In SI the place of the parallel construction after the first use of the FP is explained, though
not with absolute certainty, as an expression of Euclid’s need, before giving the construction,
to place beyond all doubt the fact that only one such parallel can be drawn1. If it were placed
right after Proposition I.27, then only the existence of the parallel line would be established.
For the SI the Euclidean line of presentation certifies the existence and the uniqueness of
the parallel line. Within SI the “true” meaning of the FP is the expression of uniqueness for
the parallel line. It is this emphasis of the SI on the uniqueness of the parallel line, which
pushed it forward as a central characteristic of Euclidean geometry. Gradually, the difference
between Euclidean geometry and non-Euclidean geometries was identified, roughly, with the
different number of parallels they permit.

The uniqueness interpretation though, is in our view inadequate. In the first place, there is
no explanation within SI why Euclid preferred his formulation of the FP than the uniqueness
assumption. Also, study of the Elements shows that Euclid seems indifferent to questions
of uniqueness. In the First Postulate (construction of a line segment between two points)
there is no mention of the uniqueness of the segment, though it is used in Proposition I.4
in the form: two straight lines cannot enclose a space. The circle of the Third Postulate
(construction of a circle of any center and radius) is not mentioned to be unique either.
Examination of the perpendicular constructions of Propositions I.11 and I.12 reveals the
aforementioned Euclidean attitude too.

Proposition I.11: Construction of a perpendicular to a given line segment from a given
point on it.

The uniqueness of this perpendicular is proved (again not in Euclid) by the Fourth Pos-
tulate (all right angles are equal), the first use of which is found in Proposition I.14!

Proposition I.12: Construction of a perpendicular to a given infinite line from a point not
on it.

This construction does not require the Fourth Postulate, but its uniqueness (not in Euclid)
does (just as Proposition I.16). This construction is in complete analogy to the parallel con-
struction. If Euclid had considered it necessary, before giving the construction, to place be-
yond all doubt that one perpendicular can be drawn, then he would have placed it right after
Proposition I.16, since this perpendicular construction is not used in Propositions I.13–I.16.

We think that Euclid’s supposed need to justify a uniqueness assumption for the object
under construction before its construction is undermined. In our view, Euclid’s main interest
lies in the construction itself only.

1See Heath, vol. 1, p. 316. Actually this is Proclus’ argument, as expressed in Proclus Commentary
(pp. 295–296).
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We cannot refute SI though, unless we ascribe to the FP a constructive role and thus
vindicate Euclid’s choice to include it among the Postulates. This inclusion is completely
mysterious within SI, a conclusion very difficult to accept, since according to it, Euclid makes
that way a very serious mistake.

2 The basic principles of a Euclidean construction and the
constructive role of the Fifth Postulate

The first three Euclidean constructions have a direct constructive role: they provide the
fundamental elements for the subsequent line and circle constructions. We believe that the
Fourth and the Fifth Postulate have an indirect, though genuine, constructive role. They
are less elementary, participating in the less elementary parallel construction.

The constructive role of the Fourth Postulate: It is used in Proposition I.16 (through
Proposition I.15), which is necessary in the proof of Proposition I.27. By this line of thought,
it participates in the construction of Proposition I.31. Also, by the Fourth Postulate, the
right angle is a fixed and universal standard, to which other angles can be compared. The
FP, treating the 2 as a fixed quantity, “depends” on the Fourth Postulate.

To reveal the constructive character of the FP, we need to understand the conceptual
requirements of ancient Greek mathematics regarding the nature of geometric construction
as they are embodied in the Euclidean Elements. These requirements are not explicitly found
in Euclid, but we consider them as an accurate reconstruction of the Euclidean constructive
spirit.

The Basic Principles of the Euclidean Construction K(P ) of a geometric prop-
erty P :

K1: Construction K(P ) is the construction K(a, P ) of a geometric object a satisfying a
geometric property P i.e.,

P (a) and K(P ) = K(a, P ).

K(a, P ) is a construction establishing an abstract object a, satisfying, as accurately as pos-
sible, the definition of P 2.

K2: If an object b, satisfying geometric property R, is used in construction K(a, P ), then
construction K(b, R) must have already been established.

K2 guarantees that K(a, P ) does not contain constructive gaps i.e., all geometric concepts
used in construction K(a, P ) are already constructed3.

K3: If a is a geometric object satisfying P and Q another geometric property, such that
whenever a satisfies P it satisfies Q, but not the converse i.e.,

P (a) → Q(a) and ¬(Q(a) → P (a)),

then K(a, Q) cannot be established through K(a, P ).
K3 is the most crucial principle of our reconstruction. It guarantees that the construction

of the abstract object a satisfying property Q cannot be established through the construction

2The expression “as accurately as possible” in K1 will be evident in section 3. K1 can also be found, though
not as explicitly as here, in the intuitionistic literature on the concept of species (intuitionistic property). A
constructive principle such as K1 can be detected in Brouwer’s notes. Also, for Griss, a species is defined by a
property of mathematical objects, but such a property can only have a clear sense after we have constructed
an object which satisfies it (see Heyting 1971, p. 126). The role of K1 in Brouwer’s concept of species is
examined in Petrakis 2007.

3Though K2 is very natural to accept, it is not trivial. In a sense, Bolyai’s construction of limiting parallels
violates it. See section 4.
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of the less general property P i.e., construction K(a, P ) respects the generality hierarchy of
geometric concepts.

For example, the construction of an isosceles triangle cannot be established through
the construction of an equilateral triangle, since there are isosceles triangles which are not
equilateral4.

K4: If a is a geometric object satisfying P and Q another geometric property, such that
whenever a satisfies P it satisfies Q, and vice versa i.e.,

P (a) ↔ Q(a),

then K(a, Q) can be established through K(a, P ) and vice versa.
K4 guarantees that whenever properties P and Q are logically equivalent, having the same

generality, they do not differ with respect to construction. K4 is the natural complement to
K3 and they form together the core of the Euclidean constructive method.

In order to understand the use of the above set of principles on the parallel construction
and their relation to the FP we shall give some useful definitions.

A construction K(a, P ) is called direct iff K(a, P ) establishes an object a, which satisfies
completely the definition of P . In that case we call P a finite property. A geometric property
Q is called infinite iff it is impossible to give a direct construction of Q. This impossibility
is not a logical one, but just a result of Q’s definition.

A construction K(a, Q) is called indirect iff K(a, Q) establishes an object a, which satisfies
the definition of Q indirectly i.e., through a logically equivalent, finite property P .

Most of Euclidean constructions are direct. For example, at the end of the perpendicular
construction of Proposition I.12, Euclid restates the definition of the perpendicular line,
showing that he has constructed an object which satisfies completely that very definition.
So, the property of a perpendicular line is a finite property.

On the other hand, the parallel property is an infinite property. Euclid defined parallel
lines (Definition 23 of Book 1) as straight lines which, being in the same plane and being
produced indefinitely in both directions, do not meet one another in either direction. It is
impossible to give a direct construction of a line parallel to a given one, since we cannot
reproduce the above definition. The infinite character of this definition lies in our mental
inability to produce a line indefinitely and act as if this product was a completed object.
Each moment we know a finite part of the on going line, from which we cannot infer that
every extension of it does not meet the given line. The formation of the parallel line never
ends.

Euclidean construction of the infinite parallel property: Euclid gradually established
(mainly through the Fourth Postulate and Propositions I.16 and I.27) the geometric property
Pb,c(a), which is a finite property. Given a line b, we can construct directly lines c and a
such that, Pb,c(a) (actually this is the construction of Proposition I.31), using only the direct
construction of Proposition I.23 (construction of a rectilinear angle equal to a given one, on
a given straight line and at a point on it).

Pb,c(a) → Qb(a) is established by Proposition I.27, but it would be a violation of
K3 if construction K(a, Pb,c(a)) was considered as construction K(a, Qb(a)). Construction
K(a, Pb,c(a)) can be considered as construction K(a, Qb(a)) only if the inverse implication
Qb(a) → Pb,c(a) is proved. Then, P and Q will have the same generality and we can apply
K4.

That is why Euclid “postponed” the parallel construction, placing it after Proposi-
tion I.29, which establishes the inverse implication.

4Euclid uses the concept of an isosceles triangle in Proposition I.5, without providing first a construction
of it, because this construction is a simple generalization of the equilateral one (Proposition I.1). Evidently,
Euclid found no reason to include this, strictly speaking, different, but expected construction.
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The constructive role of the FP: The FP is this intuitively true proposition, through
which the implication Qb(a) → Pb,c(a) is established, and then by K4, construction
K(a, Pb,c(a)) of Proposition I.31 is also construction K(a, Qb(a)) of parallels.

Euclid used the FP in the formulation needed, so that the proof of Proposition I.29
requires only one conceptual step, reaching his goal in the most direct way. So, Euclid does
not postpone the use of the FP as long as possible5, recognizing its “problematic” nature.
On the contrary, he uses it exactly the moment he needs it, revealing in that way its function.

In Euclid, if P is a finite property then K(P ) is always given through P itself and not
through an equivalent property Q i.e., K4 is not used in constructions of finite properties.
It is used only when an infinite property Q is to be constructed. Otherwise, its function
wouldn’t be clear.

The indirect construction of an infinite geometric property is not the only way ancient
Greeks used to handle an infinite property. If an infinite property Q has no finite equivalent,
it may have a special case F with a strong finite character accompanying the infinite one.
We call F a finite-infinite property. Infinite anthyphairesis (infinite continued fraction) Q
is an infinite property studied in Book X of the Elements, which does not have a finite
equivalent. Periodic anthyphairesis (periodic continued fraction) F is a special case of Q,
which possesses a strong finite character beside its infinity. Although the sequence of the
quotients forming the periodic continued fraction never ends (infinity of F ), its finite period
expresses our knowledge of this sequence (finite character of F )6.

3 The epistemological role of Euclidean constructions

Our description of the Euclidean constructive principles reveals also the difference between
Euclidean construction and Euclidean existence. We use the following symbolism:

∃aQ(a): there exists a geometric object a satisfying the geometric property Q.
In Euclid ∃aQ(a) is established either by K(a, Q) or by K(a, P ), where P (a) → Q(a) but

not the converse. Euclidean geometry is (except, e.g., Eudoxus’ theory of ratios) the basic
paradigm of a constructive mathematical theory, since existence of a mathematical object
or concept is constructively established. For example, if the construction of Proposition I.31
was placed right after Proposition I.27, that would only show the existence of a parallel line.
This proof of existence though, does not constitute construction of the parallel line.

The traditionally accepted independence between the FP and the construction of Propo-
sition I.31 is based on the identification between ∃aQ(a) and K(a, Q)7. For Euclid though,
construction of property Q is generally an enterprise larger than the exhibition-construction
of a single object satisfying Q. Parallel construction shows this fact very clearly. We safely
reach the following conclusions:

∃aQ(a) shows that property Q is not void, that is, in modern terms, it possesses an
extension. Therefore, it is meaningful to study it. On the other hand, K(a, Q) shows that
we have found a way to grasp mentally property Q (fully if Q is finite, as much as possible
if Q is infinite).

Traditionally, the Elements are considered as the original model of the axiomatic method
and logical deduction. In our view, they are also, and even more, the model of the constructive
method.

5For a recent reference to this long repeated view see Hartshorne 2000.
6Ancient Greeks had also found a necessary and sufficient condition for an infinite anthyphairesis to be

periodic (logos criterion). Its knowledge and its importance in Plato’s system have been developed in recent
times in Negrepontis’ program on Plato. See, for example, Negrepontis 2006. In Negrepontis’ reconstruction
of Plato, the concept of a finite-infinite property is of central importance.

7According to Zeuthen 1896, the main purpose of a geometric construction is to provide a proof of
existence, so the purpose of the FP is to ensure the existence of the intersection point of the non parallel
lines. This approach though, fails to see the difference between existence and construction.
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It is this combination of the axiomatic and the constructive method that reflects the
philosophical importance of the Elements. For the first time in the history of mathematics a
mathematical theory answers simultaneously the ontological and the epistemological problem
of the mathematical concepts involved. The ontology of Euclidean geometric objects and
concepts is of mental (and not empirical) nature. Almost certainly Euclidean ontology is
Platonic ontology8. This mental ontology of mathematical concepts imposes the constructive
method. It is the construction of mathematical concepts which provides their study with a
firm epistemology.

Euclid does not only care about the logical relations between geometric concepts and
objects. He also needs to answer the main epistemological question: how do we understand
the concepts that we employ in our deductions? And his answer is: we understand them
because we construct them.

So, geometric constructions form the indispensable epistemology of Euclidean geometry9.

4 The relation between Euclidean and non-Euclidean
Geometries

It is impossible here to study fully the relation between Euclidean geometry (EG) and non-
Euclidean geometries (n-EG). We shall only stress some points which derive directly from
our previous analysis.

There is here too a traditional view regarding the above relation. According to it, EG and
n-EG can be seen as mathematical structures of the same kind, differing only in the number
of parallels. One such common mathematical framework is the Hilbert plane concept10. A
Hilbert plane (HP) is a system of points, lines and planes satisfying the well-known Hilbert
axioms of incidence, betweenness and congruence. In a HP the parallel line (as any other
geometric property) is not constructed, only its existence is established. A HP is neutral with
respect to the uniqueness of the parallel line. A Euclidean plane is a HP permitting one only
parallel and a hyperbolic plane is a HP permitting more than one parallels. The consequences
of this “coexistence” of EG and n-EG were very serious. Foundations of mathematics and
mathematics itself were influenced immensely from the loss of the a priori character of EG.
EG became just one possible geometry. Kantian a priori suffered a serious blow and especially
the a priori of space. As a result of this, all major foundational programs rested either on a
Kantian a priori of discrete nature or on a purely logical substratum11.

Our reconstruction of the parallel construction suggests a strong rejection of the tradi-
tional view. In our opinion, EG has a certain constructive character, which n-EG lack. Of
course, this opinion echoes Kant. In 1995 Webb remarks12:

It was a commonplace of older Kantian scholarship that the discovery of non-
euclidean geometry undermined his theory of the synthetic a priori status of

8Euclid was a Platonist and his definitions are closely related to the Platonic ones (see Heath p. 168). The
most accurate description of the Elements would be: Platonic Euclidean geometry. A Kantian ontological
foundation of geometrical objects and concepts would transform the same corpus of results and constructions
into Kantian Euclidean geometry.

9For a recent discussion on the role of Euclidean constructions see Harari 2003. Unfortunately, the
interpretation proposed there is, in our opinion, unsatisfactory. Also, in our view, Knorr’s arguments on the
subject (see Knorr 1983) are not satisfactory too.

10This framework is not as absolute as it is often named, since it does not contain the elliptic plane, in which
there exist no parallels at all, and every line through the pole of a given line is perpendicular to it. Hilbert’s
classic work is still the best introduction to Hilbert planes (Hilbert 1971). A more absolute framework, which
contains elliptic geometry, is the concept of a Bachmann plane, or metric plane (see Bachmann 1973).

11Putnam’s assessment (Putnam 1975, p. x) is characteristic:
[. . . the overthrow of EG is the most important event in the history of science for the epistemologist.]

12See Webb 1999, p. 1.
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geometry. It is commonplace of newer Kant scholarship that he already knew
about non-euclidean geometry from his friend Lambert, one of the early pioneers
of this geometry, and that in fact its very possibility only reinforces Kant’s doc-
trine that euclidean geometry is synthetic a priori because only its concepts are
constructible in intuition.

The common HP language (or any other common mathematical framework) ignores the
role and the necessity of the FP in the parallel construction just as the epistemological
role of constructions. Modern geometry generally, seems quite indifferent to epistemological
questions.

We can only indicate here that EG and n-EG are not directly comparable, from the
constructive point of view. Therefore, EG has not lost its a priori character. To show that
the Euclidean concepts are the only (mentally) constructible ones is a big enterprise. We
shall only describe here why Bolyai’s construction of limiting parallels is unacceptable from
the Euclidean point of view.

A hyperbolic plane (LP) is a HP satisfying the following axiom:

Lobachevsky’s axiom (L): If a is a line and A is a point outside a, there exist rays Ab, Ac,
not on the same line, which do not intersect a, and each ray Ad in the angle bAc intersects a:

For the Bolyai construction we need the following propositions:

Proposition 4.1: A triangle in a hyperbolic plane has angle sum less than 2 .
A quadrilateral PQRS is a Lambert quadrilateral iff it has right angles at P, Q and S.

Proposition 4.2: In a hyperbolic plane the fourth angle (the angle at R) of a Lambert
quadrilateral PQRS is acute, and a side adjacent to it is greater than its opposite side
(QR > PS and SR > PQ).

Proposition 4.3: Suppose we are given a line a and a point P not on a, in a hyperbolic
plane. Let PQ be the perpendicular to a. Let m be a line through P , perpendicular to PQ.
Choose any point R on a, and let RS be the perpendicular to m. If Pc is a limiting parallel
ray, intersecting RS at X , then PX = QR:
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Elementary Continuity Principle (ECP): If one endpoint of a line segment is inside a
circle and the other outside, then the segment intersects the circle.

Bolyai’s construction of limiting parallel: Consider a hyperbolic plane satisfying ECP.
Suppose we are given a line a and a point P not on a. Let PQ be the perpendicular to

a. Let m be a line through P , perpendicular to PQ. Choose any point R on a, and let RS
be the perpendicular to m (see previous figure). Then the circle of radius QR around P will
meet the segment RS at a point X , and the ray PX will be the limiting parallel ray to a
through P .

Proof: PR > QR, since Q = , and from Proposition 4.1 the angle at Q is the largest
angle in triangle PQR. Also, PS < QR, since PQRS is a Lambert quadrilateral satisfying
Proposition 4.2. Therefore, endpoints R and S of segment RS are outside and inside circle
(P, QR) and, by ECP, segment RS intersects (P, QR) at a (unique) point X . PX is the
limiting parallel ray to a through P , since (L) guarantees its existence and by Proposition 4.3
we know that it satisfies PX = QR.

The curious feature of the above proof, namely that we prove that this construction
works only by first assuming (via (L)) that the object we wish to construct already exists,
is common knowledge13. But the presupposed existence of the limiting parallel is axiomatic
and not constructive; therefore, Bolyai’s construction violates the Euclidean Principle K2.

Another aspect of the problematic character of Bolyai’s construction is related to con-
structive principles K3, K4. Proposition 4.3 is in analogy to Proposition I.29, since it can be
written in the form:

(L) → PX = QR.

In our terminology, (L) is an infinite property and PX = QR is a finite one. In order to
consider, from the Euclidean point of view, the direct construction of X as the construction of
the limiting ray, we have to prove directly, in a hyperbolic plane satisfying ECP, the analogue
to Proposition I.27:

PX = QR → (L).

Such a direct proof has not yet been found. Therefore, although the above line and circle con-
struction of the most important concept of hyperbolic geometry shows Bolyai’s constructive
sensitivity, it does not satisfy the constructive principles of the Euclidean parallel construc-
tion.

The usual proof of the existence of limiting parallel is based on Dedekind’s continuity
axiom14:

Dedekind’s Continuity Axiom (D): Any (set theoretical) separation of points on a line
(i.e., a Dedekind cut) is produced by a unique point.

(D) is a highly problematic axiom from the Euclidean point of view. Its set theoretical
nature is highly non constructive. So, the question, whether Bolyai’s construction could be
used to prove the existence of limiting parallel for a system of axioms that includes ECP but
does not include (D), was naturally raised by Greenberg15.

Pejas, working in the framework of Bachmann plane geometry, a geometry without be-
tweenness and continuity axioms, succeeded to classify all Hilbert planes16. Greenberg, using
Pejas’ classification of Hilbert planes succeeded in answering his question positively17.

13See, for example, Hartshorne 2000, p. 398.
14See, for example, Greenberg 1980, p. 156.
15See Greenberg 1979a.
16A Hilbert plane corresponds to an ordered Bachmann plane with free mobility. As Greenberg puts it

(see Greenberg 1979b), Hilbert’s approach is thus incorporated into Klein’s Erlangen program, whereby the
group of motions becomes the primordial object of interest. For Pejas classification theorem see Pejas 1961.

17In Greenberg 1979a.
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Proposition 4.4 (Pejas-Greenberg): If the ECP holds and the fourth angle of a Lambert
quadrilateral is acute, then Bolyai’s construction gives the two lines through P that have
a “common perpendicular at infinity” with a through the ideal points at which they meet
a. Among Hilbert planes satisfying the ECP, the Klein models are the only ones which are
hyperbolic, and Bolyai’s construction gives the asymptotic parallels for them.

An important corollary is the following proposition:

Proposition 4.5: Every Archimedean, non-Euclidean18 HP in which the ECP holds is
hyperbolic.

Though Pejas-Greenberg managed to show that the Bolyai construction does yield the
limiting parallel replacing (D) with more elementary axioms, their proof is indirect, since it
is based on a classification theorem.

So, from the (Euclidean) constructive point of view, there is still no direct constructive
proof of the concept of limiting parallel19.
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to Hilbert”, in From Dedekind to Gödel, J. Hintikka (ed.), Kluwer Academic Publishers,
pp. 1–20.

– Zeuthen, H. G., 1896, “Die geometrische Construction als ‘Existenzbeweis’ in der antiken
Geometrie”, Mathematische Annalen 47, 222–228.


