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Abstract

Regular and semi-regular polytopes in four dimensions are the generalization of the Platonic
Solids and the Archimedean solids. For a better understanding of these four-dimensional objects, we
present the method of the amateur mathematician Alicia Boole Stott, who worked on the topic at the
end of the 19th century. The methods she introduced in her two main publications are presented in
the workshop, together with exercises that help the visualization of these four-dimensional polytopes.

1 Introduction

In the present workshop we intend to make the participant familiar with the notions of
regular and semi-regular polytopes in four dimensions using the methodology provided by
the amateur mathematician Alicia Boole Stott. The first part of the workshop is devoted to
introducing the Platonic Solids (or regular polyhedra) and their analogues in four dimensions:
the regular polytopes. We also provide a short biography of Boole Stott. The remaining of
the course is organized as follows. First, we discuss the 1900 publication of Boole Stott, where
the three-dimensional sections of the four dimensional polytopes are treated. For a better
understanding of her method, we first look at the three-dimensional case, and generalize
the results to the fourth dimension. Finally, we treat Boole Stott’s results in deriving semi-
regular polytopes from regular ones. As before, examples in the third dimension will be first
given as a preceding step to the four-dimensional case.

2 Platonic and Archimedean solids

The so-called Platonic Solids or regular polyhedra are subsets of the three-dimensional space
that are bounded by isomorphic regular polygons and having the same number of edges
meeting at every vertex. There are five of them, namely the tetrahedron, cube, octahedron,
dodecahedron and icosahedron.

Figure 1 – Platonic Solids
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If different types of polygons are allowed as faces, one obtains the semi-regular polyhedra.
These are subsets of the three-dimensional space bounded by regular polygons of two or
more different types, ordered in the same way around each vertex. This group can be
divided into the so-called prisms (constructed from two congruent n-sided polygons and n
parallelograms), the antiprisms (constructed from two n-sided polygons and 2n triangles)
and the Archimedean solids (the remaining ones). There are 13 Archimedean solids, shown
in the figure below.

Figure 2 – Archimedean Solids

3 Regular four-dimensional polytopes

The four-dimensional objects analogous to polyhedra are called polytopes. As polydedra
are built of two-dimensional polygons, so polytopes are built of three-dimensional polyhedra.
The regular polytopes, which are the equivalent of the Platonic solids in the fourth dimension,
can be defined as subsets of the four-dimensional space with faces isomorphic to the Platonic
solids and with the same number of faces at each vertex. There exist six regular polytopes
in four dimensions, namely the hypertetrahedron, the hypercube, the hyperoctahedron, the
24-cell, the 120-cell and the 600-cell. Their number of vertices (v), edges (e), faces (f) and
cells (c) and the type of cells are given in the following table 1.

Table 1 – Six regular polytopes

Polytope v e f c cell
Hypertetrahedron or 5-cell 5 10 10 5 tetrahedron
Hypercube or 8-cell 16 32 24 8 cube
Hyperoctahedron or 16-cell 8 24 32 16 tetrahedron
24-cell 24 96 96 24 octahedron
120-cell 600 1 200 720 120 dodecahedron
600-cell 120 720 1 200 600 tetrahedron
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These regular polytopes were first discovered by Schläfli between 1850 and 1852 (only
published in 1901), and independently rediscovered by several mathematicians like Stringham
(1880), Hoppe (1882), Schlegel (1883), Puchta (1884), Cesàro (1887), Curjel (1899), Gosset
(1900) and Boole Stott (1900).

Boole Stott found the six regular polytopes using a very intuitive method. In order to
give an insight of her proofs, we present a series of exercises that indicate how to use her
reasoning in order to find which Platonic Solids can occur.

Exercise: Suppose that P is a Platonic Solid made of n-gons and let a be its inner angle.
Note that a = 180(n−2)/n. How many n-gons can meet at each vertex? Note the following:
suppose there are m, n-gons at a vertex. Then m > 2 and a + . . . + a = m · a < 360◦. For
example, suppose P is made of triangles. Then a = 180(3− 2)/3 = 60◦. How many triangles
can meet at a vertex? The same reasoning for squares, pentagons, etc.

Note that this exercise shows that there exist at most five Platonic Solids, but does not
prove their existence (the construction of the solids would be needed).

Exercise: Once the number of faces (equivalently edges) in each vertex is known, we can find
v, e, and f (here v, e, and f denote the number of vertices, edges and faces of the polyhedron)
as follows. Let P be a polyhedron bounded by n-gons. Let s be the number of faces meeting
at a vertex (note that this number is the same as the number of edges at a vertex). Write f
in terms of s, v, and n and e in terms of f and n. Use this two formulas and Euler’s formula
f − e + v = 2 to find v, e and f .

We proceed to generalize this reasoning to see what polytopes can occur in four dimen-
sions. The idea of Boole Stott’s proof is as follows: Let P be a regular polytope made of
cubes. Let V be one of the vertices of P . Intersect P with a three-dimensional space H
passing near the vertex V such that H intersects all the edges coming from V . In particular,
each cube meeting in V is intersected by the three-dimensional space in a triangle. There-
fore, the section H ∩ P is a Platonic Solid bounded by equilateral triangles. The Platonic
Solids bounded by triangles are: the tetrahedron (bounded by 4 triangles), the octahedron
(bounded by 8 triangles), and the icosahedron (bounded by 20 triangles). We conclude the
following: the polytope can only have 4, 8, or 20 cubes meeting at each vertex. Eight cubes
fill up the three-dimensional space, hence eight are too many. So are twenty cubes. We
conclude that there exists only one regular polytope made of cubes, namely the hypercube,
which has 4 cubes at each vertex.

Analogously, the remaining polytopes can be obtained. Just like in the three-dimensional
case, the argument explains why there are at most six regular polytopes, but the existence
of them is yet to be established.

4 A short biography of Boole Stott

Alicia Boole Stott (1860–1940) was born in Castle Road, near Cork (Ireland). She was
the third daughter of the famous logician George Boole (1815–1864) and Mary Everest
(1832–1916). Boole Stott made a significant contribution to the study of four-dimensional
geometry. Although she never studied mathematics, she taught herself to “see” the fourth
dimension and developed a new method of visualising four-dimensional polytopes. In par-
ticular, she constructed three-dimensional sections of these four-dimensional objects which
resulted in a series of Archimedean solids. The presence in the University of Groningen of
an extensive collection of these three-dimensional models (see Figure 3), together with re-
lated drawings, reveals a collaboration between Boole Stott and the Groningen professor of
geometry, P. H. Schoute.

This collaboration lasted for more than 20 years and combined Schoute’s analytical meth-
ods with Boole Stott’s unusual ability to visualize the fourth dimension. After Schoute’s
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Figure 3 – Models of sections of polytopes, by Boole Stott (courtesy of the University Museum
of Groningen, The Netherlands)

death in 1913 Boole Stott was isolated from the mathematical community until about 1930
when she was introduced to the geometer H. S. M. Coxeter with whom she collaborated until
her death in 1940.

5 Two-dimensional sections of the Platonic Solids
In Boole Stott’s 1900 publication, the three-dimensional sections of the six regular polytopes
are computed. These sections are the result of intersecting the four-dimensional object
with particular three-dimensional spaces. We will first discuss her methodology in the three-
dimensional case. With this purpose, some exercises to calculate the two-dimensional sections
of some Platonic Solids are provided. Boole Stott’s method consisted mainly on unfolding
the object into a dimension lower, and work on the sections in the new picture.

Figure 4 – Unfolded tetrahedron and its parallel sections

Let us begin by calculating the sections of the tetrahedron that are parallel to a face.
Consider a plane passing through one of its faces. Clearly, the intersection of the plane and
the tetrahedron will be a triangle of the size of the face. In the unfolded tetrahedron (see
Figure 4), the section is the triangle with vertex a. For the next section, the plane is moved
parallel to this triangle until it passes through the point b. In the unfolded figure, the edges
of the triangle are moved parallel at the same distance until passing through b, forming again
a triangle of smaller size.

It is then clear that all sections are triangles decreasing in size (ending with the vertex d).
One can see that the sections can be computed in the unfolded figure without actually
visualizing the three-dimensional object.

In the same manner, the sections of other Platonic solids can be calculated. As an
exercise, the sections of the octahedron and the cube were calculated during the course.
Their unfoldings (or nets) are provided in the following figure.
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Figure 5 – Unfolded octahedron and unfolded cube

6 Boole Stott’s method to calculate sections:
four-dimensional case

The same methodology can be used with four-dimensional solids. Boole-Stott’s method
of computing three-dimensional parallel sections uses the unfolding of the four-dimensional
body in a three-dimensional space, as it was done for one dimension lower. Let us now
compute the three-dimensional sections of the hypercube parallel to a cell.

Figure 6 shows part of an unfolded cube (original drawing by Boole Stott). We note that
some of the two-dimensional faces (i.e., squares) must be identified in order to recover the
original hypercube (this identification, of course, can only be understood in four dimensions).
The first three-dimensional section is the result of intersecting the polytope P with a three-
dimensional space H1 containing the cube ABCDEFGH. To obtain the second section, the
space H1 is moved towards the center of the polytope, until it passes through the point a.
Call this new three-dimensional space H2. The second section is H2 ∩P . Note that the faces
of the new section must be parallel to the faces of the cube ABCDEFGH. In particular, the
section H2 ∩ P contains the squares abcd, abfg and adef . After the necessary identification
of the points, edges and faces that occur more than once in the unfolded polytope, and using
the symmetry of the polytope, one can conclude that the section H2 ∩ P is again a cube
isomorphic to the original cube-cell ABCDEFGH. Analogously, the third section will again
be a cube.

Figure 6 – Part of an unfolded cube (Boole Stott, 1900)
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This simple example gives the idea of Boole Stott’s method. Following the same reasoning,
one can also compute the sections of the 16-cell and 24-cell. This is proposed in the following
exercises, where the original drawings by Boole Stott of the unfoldings are displayed. We
omit the remaining cases, which are more difficult. For a complete study of these sections
and drawings of the results one may look at (Boole Stott, 1900).

Exercise: Calculate the three-dimensional sections of the 24-cell (using the unfolded poly-
tope in Figure 7) as follows. Let P be the 24-cell. Let H1 be a three-dimensional space
passing through the octahedron ABCDEF. Find

• 1st section: H1 ∩ P

• 2nd section: H2 ∩ P where H2 is parallel to H1 and passing though the point a

• 3rd section: H3 ∩ P where H3 is parallel to H1 and passing though the point AC

• 4th section: H4 ∩ P where H4 is parallel to H1 and passing though the point a1

• 5th section: H5 ∩ P where H5 is parallel to H1 and passing though the point A

Figure 7 – Part of an unfolded 24-cell
(Boole Stott, 1900)

Figure 8 – Part of an unfolded 16-cell
(Boole Stott, 1900)

Exercise: Calculate the three-dimensional sections of the 16-cell (see unfolding in Figure 8).
Let P be the 16-cell. Let H1 be a three-dimensional space passing through the tetrahedron
ABCD. Find

• 1st section: H1 ∩ P

• 2nd section: H2 ∩ P , H2 parallel to H1 and passing though a

• 3rd section: H3 ∩ P , H3 parallel to H1 and passing though a1

• 4th section: H4 ∩ P , H4 parallel to H1 and passing though a2

• 5th section: H5 ∩ P , H5 parallel to H1 and passing though D′
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7 Deriving semi-regular polyhedra and polytopes from
regular ones

As mentioned before, the Archimedean solids are the semi-regular polyhedra that are not
a prism (two n-gons and n parallelograms) or an antiprism (two n-gons and 2n triangles).
Equivalently, the semi-regular polytopes can be defined. In her 1910 publication, Boole Stott
found a method to obtain the semi-regular solids in three and four dimensions. In order to
do that, she applied two operations, defined by her as follows:

Definition: The operation expansion with respect to the vertices of a polytope consists
of considering the set of its vertices (equivalently edges, faces, cells, . . . ), and move each
element of the set at the same distance away from the center of the polyhedron such that
the new (extended) set of vertices (eq. edges, faces. etc) define a semi-regular polytope.

Definition: The operation contraction consists of taking the set of elements considered
in the expansion (i.e., vertices, edges or faces) and moving them uniformly towards the center
until they meet.

In the two-dimensional space, one can expand an n-gon with respect to its edges. This
results in a 2n-gon, as shown in Figure 9.

Figure 9 – Expansion (edges) of a regular
n-gon gives a 2n-gon

Figure 10 – Expansion (edges) of an octahe-
dron is a truncated octahedron

In the three-dimensional space, a Platonic Solid may be expanded with respect to its
edges. The result is the same solid truncated (i.e., all the corners are cut off).

If one applies the operation expansion with respect to the faces to a Platonic Solid, the
result is a semi-regular polyhedron where the original faces of the Platonic Solid remain the
same, all edges are replaced by squares and all vertices are replaced by n-gons (here n is the
number of edges at each vertex). We suggest the following exercise.

Exercise: Calculate the expansion (faces) of the cube and the expansion (faces) of the
octahedron. Look at the list of Archimedean polyhedra to identify the new solids. Can you
draw any conclusion?

For more information on polyhedra and four-dimensional polytopes we refer to (Cromwell,
1997) and (Coxeter, 1961, Chapter 22) respectively.
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8 Conclusions
Four-dimensional polytopes are usually very difficult to visualize. For a better understanding
of these objects we propose to follow the methodology used by Boole Stott on the topic. First,
exercises for the three-dimensional case have been provided in order to help the participant
to get familiar with Boole Stott’s method. After that, the method is generalized to the
four-dimensional case. New operations are defined and performed on the polytopes to obtain
Boole Stott’s results.
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