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Abstract

The appearance of symbols is quite typical for mathematical texts. The use of symbols follows
several rules which in most cases are not taught in an explicit manner but which are important to
improve aspects of communication and cognition. The use of calculators, computer algebra, and
word processors can the awareness of their functionality increase. Many of these rules are rooted in
history and follow general semiotic principles.

1 Introduction

“What ideas do you connect with mathematics?” This question can provoke different answers
but it will not come as a great surprise if you hear “a2 + b2 = c2” or “Yes, I remember x
and y”. For many people mathematics has something to do with symbols and characters
of a more or less dark meaning. Clearly, in other sciences you will also find symbols and
formulas. Think of physics with the famous relation E = mc2 or of chemistry with the well
known H2O. The development of symbolic systems is part of the history of mathematics and
it can be shown that the development of apt notations was influential for the progress of
mathematical thinking. We refer to Tropfke 1980 and Gericke 1984.

Mathematics uses language which is a subsystem of natural language enriched with pe-
culiar signs and concepts (the so-called mathematical register, Halliday 1974; we refer also
to Davis & Hunting 1990 and Maier & Schweiger 1999). A textbook can be written in
English, German or Turkish but the employed symbols are similar around the world. The
mathematical language is a tool for doing mathematics and a medium of communication.
Mathematical contents are communicated with the use of the mathematical register but this
language (think of written symbols and diagrams!) is a working medium as well. Mathe-
matical symbols refer to notions but working with these symbols is part of mathematical
activity. This is evident when looking at various calculations in written form or the solution
of equations. In a manner similar to the study of natural languages one can distinguish be-
tween syntax and semantics of the mathematical language although the division line cannot
be drawn sharply. In contrast to natural languages clearly phonology is not an important
part because the mathematical register is (almost) a subsystem of a given natural language.

An important part of mathematics education is to teach a suitable knowledge of mathe-
matical symbolisation. It is important to persuade students that a symbolic language is an
indispensable help. Signs and symbols should be seen as an important help to understand
mathematics and not as a barrier.
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2 The system of mathematical symbols

As already mentioned mathematical symbols have been developed during a long historical
process (see Tropfke 1980, Gericke 1984, Menninger 1979). The aim of these considerations
is not to sketch the historical development but to analyse the implicit rules which govern
the process leading to the ‘mathematical pidgin’ as we could call this system. Basically the
relation between a symbol or sign and its meaning is arbitrary. A dog does not bear any sign
that he is called dog in English or köpek in Turkish. But the need to communicate (and to
work with the symbols) is a certain constraint.

The choice of symbols is regulated by at least three parameters: Tradition, communica-
bility, and aspects of learnability. It is clearly tradition if an unknown number or a variable
is denoted by the letter x. The ease of communication was a driving force in accepting the
standard notation Θ for the set of rational numbers. The use of the arrow → for a map
also bears the aspect of iconicity. From the viewpoint of learning the use of the first let-
ter as r for radius or as A for area (clearly this aspect is dependent on the language of
communication) can be recommended. On the other hand it could be important to avoid
polysemy. Therefore in geometry one can use π for the circular number but then one must
not use π to denote a projection. Some restrictions can be seen by international regulations
as formulated by the International Organization for Standardization (ISO) and their national
partners (http://www.iso.org/). These recommendations are not free from strange ideas such
as the use of N for the set of natural numbers including 0. Clearly, the number 0 cannot
be seen as a natural number because everyone counts 1, 2, 3, . . . This looks a fossil from
the exuberant use of set theory in mathematics education since 0 is the cardinal number
of the empty set. A further restriction is the availability of characters and symbols on the
computer. Some differentiating features like bold face cannot be used for handwriting.

Various classifications for mathematical symbols have been proposed. One may distin-
guish visual (or iconic) symbols and algebraic (or verbal) symbols, e.g. the sign ∆ for a
triangle in contrast to the letter x for a variable. But the use of ∆ for the Laplace operator is
just algebraic! This is again connected with the development of the mathematical notation.
In early mathematical texts almost everything was expressed by whole words. Then a kind
of syncopation (very often the use of the first letter of the word which denoted the concept)
took place. One can show some nice cases in the development of this mathematical pidgin.
The use of F for a closed set goes back to the French word fermé (= closed) and the use of G
for an open set is related to the German word Gebiet (= domain; within topology the word
is now reserved for a connected open set). Sometimes the meaning as well as the shape was
changed. The standard symbol ∞ for infinity is a modified version of the Roman symbol
M for 1 000 (in fact the use of M which is the first letter of Latin mille =1000 seems to be
a later invention). The last stage is the more or less free use of symbols. In mathematical
texts this assignment is signalled by phrases like ‘We denote . . . ’ or ‘Let g be a straight line
. . . ’ In the German language this would be very appropriate since a straight line is Gerade
(in Bahasa Indonesia it is garislurus).

It is also possible to differentiate between symbols, which denote the given data, and
symbols, which refer to activities. In the phrase 25 ÷ 5 the numbers refer to given data but
the sign ÷ signifies the activity (in this case the division) to be executed.

Another distinction can be made between symbols, which denote constants, and symbols,
which denote variables. In a given text constants refer to the same concept and may be seen
as the nouns of mathematical language. Variables are similar to pronouns. In a given text
they can refer to different concepts. In the equation x2 + x − 1 = 0 the letter x denotes a

number which has to be found. In the formula
∫ 1

0
2xdx = 1 the letter x means a so-called

bound variable.
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The system of mathematical symbols can be seen as an extension of a writing system.
Alphabetic writing systems usually follow spoken language in their linear sequence of signs.
The ideal is a writing system with a one-to-one correspondence of phonemes and graphemes.
But most writing systems deviate in some way from this ideal. The writing of the English
language is very deviant, e.g. the digraph gh can be spoken as an f in the word laugh
but its appearance in the word night is due to an older pronunciation. In mathematics
linearly ordered sequences and planar complex diagrams are used. The Chinese writing uses
planar symbols as the carrier of meaning but their order follows spoken language. In some
way between one should mention syllabic alphabets. The development of the world’s writing
systems is a very interesting part of cultural history (Haarmann 1991, Daniels & Bright 1996)
and some of the strategies used in these systems are also used in mathematical symbolisation.

One should keep in mind that the correct reading of mathematical symbols is an achieve-
ment of its own. The context can be important. The symbol a11 seen as an element of
a matrix is spoken as “a-one-one” but as a member of a sequence it could be “a-eleven”.

The correct reading of
∂2f

∂x2 also has to be learned. The sequence of symbols can follow the

wording (in a given language!):
√

5 “square root of 5”, a2 as “a-square”, 3 + 4 = 7, “three

plus four is seven”,
4
3

“four thirds” (to be read from above), 34 “three to the power of four”

(to be read from left to right), and
(

n
2

)
“n over two” (the brackets are read as “over”).

The expression
∫ 1

0
x2 dx is even more difficult to word correctly. The sequence of symbols

can be different if one uses a hand calculator or a CAS.
Some symbols are pronounced according their semantic meaning: a = b is spoken as “a is

equal to b” but a∗ b very often can be worded as “a star b” with the meaning of an algebraic
operation. Letters normally are worded with their names: x is spoken “iks” but the letter
has the meaning of a variable or unknown quantity. The correct wording of symbols can
cause additional difficulties if one teaches or learns mathematics in a foreign language.

2.1 The origin of symbols
Mathematical symbols originate from various sources. There are the signs for numbers
including several auxiliary symbols (decimal points, fraction bars and so on). The various
alphabets build a great resource. This is the Latin alphabet, but also the Greek alphabet.
The Hebrew letter ℵ (aleph) is used in set theory; the Cyrillic alphabet contributed the letter

(sha) for the Shafarevich group in algebraic geometry. Some symbols go back to letters
but have been modified: the root symbol √ from Latin radix ‘root’, the symbol ∂ (mostly
used for partial derivatives and the boundary operator) from derivatio ‘derivation’ or the

integral sign
∫

from Latin summa ‘sum’.

There are a great number of special symbols which can be grouped together by similarity
of form and meaning, for example the symbols for algebraic operations +, ∗,×, ◦ or the
symbols for symmetric relations (i.e. symbols denoting a kind of equality) =,∼,≡,≈.

Auxiliary symbols which are used as diacritic signs are a special class. Examples are
strokes, stars, macrons a′, a∗, â.

2.2 The formation of symbols

As just mentioned, the addition of other signs forms new symbols. In a more systematic way
one can think of the following devices.

• Numbers or letters in a lower position to distinguish different objects: a1, x23, yn.
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• Use of diacritic signs: x′, x̃, x⃗. This strategy is very old. In one ancient Greek system
the letter which used ε for 5 but /ε for 5 000. This strategy is widespread in writing.
In Turkish ş stands for a fricative sound like sh in shoe and contrasts with plain s. The
similar distinction can be found in Arabic shin as contrasted with the letter sin .

• Letters or symbols in a higher position: a5, xn, r−2.

• Juxtaposition: 28, 2x2, 3
1
2
. These examples show that juxtaposition is open to different

interpretations: 28 = 20 + 8, 2x2 = 2 × x2, but 3
1
2

= 3 +
1
2

(and not 3 × 1
2
).

• Planar symbols:
3
4
,
√

c, 5
√

x,
∞∑

i=1

1
2i

, |d|, ∥y∥,
∣∣∣∣
−2 1,5
6,2 −4

∣∣∣∣.

Symbols and chains of symbols have different meanings according to:

• Order: 17 is different from 71.

• Position: 23 is different from 23.

• Size: Indices and exponents are normally smaller in size. The symbol ∩ denotes the
binary operation ‘intersection’ but the bigger symbol

⋂
is used for the intersection of

an arbitrary number of sets.

• Shape: The difference in shape distinguishes the types of brackets ( ), [ ], and { }.
Here again this difference can be important as in the following example: In number
theory [x] denotes the integral part of x but {x} means the fractional part of x. In
the theory of Lie algebras [x, y] is used for the binary operation. The use of { } in set
theory is conventional. The equation (3x + 5) − 2(x − 1) = 12 is just more usual than
[3x + 5] − 2[x − 1] = 12. There is a great difference in meaning between | | and ( ) as

can be seen from examples like |a + b| ≤ |a| + |b| and (a + b)c = ab + ac or
∣∣∣∣

a
c d

∣∣∣∣

(determinant) and
(

a b
c d

)
(matrix).

• Orientation: ∩ has different meaning from ∪, ⊇ is different from ⊆. To my knowl-
edge only some syllabic alphabets for native languages of Canada use a similar device
systematically. We give two examples from Inuktitut:

▹a ∆i ◃ u

< pa ∧ pi >, pu.

• Repetition: f ′(x) stands for the first derivative and f ′′(x) denotes the second derivative.
The strokes are reinterpreted as Roman numerals in f (k)(x), the derivative of order k.

3 Conventions for the use of mathematical symbols

Mathematical symbols are conventions. This can be seen best at the fact that one can use
a different notation to express the same idea. The assertion

d sin x

dx
= cosx

can be expressed equivalently as sin′ y = cos y.
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Although the freedom to use an arbitrary notation has no limits, conventions and rules
are very important. There are good reasons for such behaviour which are important from
an educational viewpoint. A steady change of notation impedes communication. A carefully
chosen symbolisation may shed light on connections and reduce the labour of memory. There
are some widely accepted notations.

• π for the circle number and e for the base of natural logarithms

• the use of lower case letters as variables for numbers

• the use of the Greek letters ε and δ for “small” numbers

• the use of symbols for relations like =, <, >,≤,≥

• the meaning of the algebraic symbols +,−, ·, :,
∑

,
∏

, of the root symbol
√

, and the
logical symbols ∨, ∧, ¬, ⇒, ⇔, ∃, ∀

• the use of the symbol ∥ “parallel”, ⊥ “perpendicular”, ∼ “similar”, ∼= “congruent” (in
geometry), ≡ “identically equal”, “congruent” (in algebra)

Such conventions are widely distributed. However, there are some rules which resemble
the rules of the grammar of a language. What follows should give some ideas in the description
of the “implicit” grammar of mathematical symbolism. The notion “implicit” means that
these rules in most cases are not taught explicitly, but are followed like the rules of grammar.

3.1 Serialisation

To assist the memory it is useful to resort to ordered data. This can be the sequence of
natural numbers or the sequence of signs of an alphabet. The order of some subsequences
is old cultural heritage. The Hebrew alphabet starts with aleph ℵ, beth , gimel and the
Greek alphabet with α, β, γ. In the Arabic culture the older order of the alphabet also was
alif\, bâ , ğ̂ım . The order a, b, c reflects the fact that Latin c originally denoted a velar
stop (close to k or g). The subsequence k, l, m, n has also survived some millennia.

The order of the various alphabets was fixed enough that these signs were also used for
numbers. As late as 1617 J. Napier used the sequence a, b, c, . . . as a dyadic code, e. g.
1611 = 210 + 29 + 26 + 23 + 21 + 20 was represented as lkgdba (obviously Napier had i = j).
The notation α = a + ib + jc + kd for a quaternion clearly reflects this idea.

The letter x seems to be the most common device for an unknown number or a variable.
If more variables are used one chooses the next letters y and z. If more letters are necessary
very often one chooses a new subsequence e. g. u, v, w. Clearly another device is to use
x1, x2, x3, . . . As the last number of a count is the number of counted items, it would be a
little be strange to use x2, x3, x6 in a system of equations with three unknown quantities.
One can also use a notation like ai, ai+1, ai+2, ai+3, . . . Clearly, the system may be disturbed
by the fact that some letters have a connotation in the context. If the letter e is used for
Euler’s number then a sequence of constants a, b, c, d must stop here! The sign π very often
is fixed by its meaning as the circle number. However, π, ρ, σ, . . . are used for permutations
in group theory. Note that this block can be found in exactly the same order in the Greek
alphabet where π = 80, ρ = 100, σ = 200 (to represent the number 90 a special sign called
koppa was used).

Viète used a quite different system. The letters for vowels were used for unknown quan-
tities and the letters for consonants for known quantities. His famous rule for the connection
between the coefficients of a quadratic equation and the roots was written as follows:
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“Si B + D in A—A quad., aequaliter B in D : A explicabilis est de qualibet illarum
duarum B vel D.” (‘The equation (B + D)A − A2 = BD has the roots B and D’. Note the
line over the symbols was used for the bracket and the Latin ‘in’ stands for multiplication).

Bhāskara used the words for colours (and their first letters) to denote unknown quantities
extending the first one x1 (which was called yāvat tāvat), namely kālaka ‘black’, n̄ılaka ‘blue’,
p̄ılaka ‘yellow’ and lohitaka ‘red’.

Serialisation helps to memorise but it also increases the readability of a text as a kind of
“advanced organizer”. If one finds in a text the notation V for a vector space and suddenly
one reads W , in most cases this letter denotes another vector space. If a text uses the letters
f and g for continuous functions, a further function will very often be denoted by h. However,
in most cases one chooses ψ after φ, although in the Greek alphabet the next letter would
be χ.

4 Configurations

There are some rules which generate “good” configurations. One rule may be called similarity
within a configuration. A notation which mixes numeration like x1, x

2, . . . in a sequence would
be seen as strange. The same would apply to the use of x, Y, ζ instead of x, y, z. Clearly there
are some exceptions. An example is the notation s = σ + it for complex numbers in analytic
number theory. In this case the rule of alphabetic correspondence has won. σ denotes the
real part of s, similar to the notation α = a + ib and γ = c + id where α corresponds to a
and γ corresponds to c. Traditionally, the vertices of a triangle will be denoted by A, B, C,
the opposite sides by a, b, c and the angles by α, β, γ. However, for a rectangle a different
system has to be used!

Alphabetic correspondence is used in connection with diacritic signs. The derivative of a
function f can be denoted as f ′ . Then Leibniz’s rule (fg)′ = f ′g + fg′ is easy to remember.
In a similar way the primitive function of f will be denoted as F . The dual space of a vector
space V is denoted as V ∗.

But there is also a rule of contrast. When you use capital letters for points then probably
you will choose lower case letters for lines. If you need a further notation for planes you
could take the Greek alphabet. In the equation of a line ax + bx + c = 0 the variables x and
y contrast with the other variables a, b, and c (in this context often called parameters). This
rule of contrast is not followed in physics which makes the formulas less readable! A good
example is the equation of planetary motion

dr

dϕ
=

mr2

j

√
2
m

(E +
γmM

r
) − j2

m2r2 .

Alphabetic correspondence can be seen in the notation m and M for the masses involved, r for
the distance (derived from radius) and Efor energy (j stands for angular momentum, γ for the

gravitational constant). A similar case is van der Waals’ equation
(
p +

a

V 2

)
(V −b) = RT ,

where we find p for pressure, V for volume and T for temperature, and R a thermodynamic

constant. A mathematician would like to see the equation
(

x +
a

y2

)
(y − b) = Rz!

Sometimes a conflict appears: If one denotes a point in the plane by X = (x, y) then the
principles of alphabetic correspondence and of serialisation can produce different continua-
tions X = (x1, x2), Y = (y1, y2) or X1 = (x1, y1), X2 = (x2, y2) as notations for two points
in the plane.

Alphabetic correspondence is also the source of new notations. The sum of two numbers
is denoted by the symbol + and the product by a cross x or a dot · or very often suppressed
at all, as in 2a or by an asterisk ∗. Note that multiplication by 1 is generally suppressed: We
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write the letter a for 1a. This is similar to the 1-deletion with number words. We say ten
instead ∗one ten but one million for *million! For the sum of several summands one uses the
sign

∑
(capital sigma as sum) and for the product of several factors the symbol Π (capital

pi as product). Acronymic devices are very old. In ancient Greek in one of the numeral
systems the capital letters Π, ∆, H were used for the numbers 5 (= pente), 10 (=deka),
and 100 (= hekaton). On the computer we find: F format, H help, S save etc. As already
mentioned the symbol ∂ is just a variant of the letter d. In complex variables the symbol ℘
(a hand written p) is used for the double periodic functions. Intersection and union of two
sets are expressed by the use of ∩ and ∪. For an arbitrary family of sets we use the same
symbols but modified to capital letters:

⋂
and

⋃
. In algebra the sign

∏
for product has

been extended to the sign
∐

denoting the coproduct.
Symmetry is a peculiar form of correspondence. This correspondence can be a kind of

pairing: the image z = x + iy will be denoted as w = u + iv. The partial derivative

operators
∂

∂x

∂

∂y
, . . . correspond to the differentials dx, dy, . . . Brackets are always used in

pairs: (. . . ), [. . . ] und {. . . }. A notation like a(b− c or a(b− c] would be look strange. Only
the expression a(b−c) would be called well formed. Brackets are not necessary in all cases as
can be illustrated by the Polish notation abc − ∗ (brackets are then necessary to distinguish
(52)(33)6−∗ from 5(233)6−∗). The expression y = F (x) is just convention but the notation
y = F (x would serve the same purpose (note the wording “f-of-x” does not reflect the closing

bracket). Some people would prefer
x + 2
x2 + 4

contrasting with the expression
x + 2
4 + x2 .

4.1 Wellformedness
The syntax of mathematical texts obeys some principles of wellformedness. We note three
such rules: congruence, closure, and position. The equation

∞∑

k=1

1
k2 =

π2

6

follows the rule of congruence which says that the variable k must appear at least twice. The
expression

∞∑

k=1

1
j2 =

π2

6

does not obey this rule (or the formula is wrong).
A rule of position says that the symbol = appears between at least two expressions. The

expression a+ b = c is correct but the expression ab+ c = is incorrect or at least incomplete.

A rule of closure would demand that the expression
∫

f(x) should be completed to the

expression
∫

f(x) dx.

Bound variables must not be used as free variables within the same expression. The

writing
∫

sin xdx = − cosx is not seen as correct but is sometimes tolerated as an “abus de

langage”.
Since variables are like pronouns the same letter may be used in different expressions.

The formulae
∫

sin xdx = − cos y + C and
∫

1
x

dx = ln y + C can appear in the same text

although the letter x cannot have the same connotation in both expressions. In the second
example the case x = 0 is excluded.
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