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Abstract

The infinite is a significant element for understanding calculus, yet studies suggest that its
counter-intuitive nature constantly confused college students. The purposes of this study were to
investigate college students’ perceptions of paradoxical arguments regarding the infinite and iden-
tify commonalities between cognitive obstacles and historical obstacles. Data showed students’ per-
spectives regularly shifted back and forth when facing contradictory situations and, compared to
part-whole relationship, the one-one correspondence relationship was the most cited criterion for
comparing the cardinality among infinite sets, which is somewhat different from relative studies.
The present study also highlights Bernhard Bolzano’s philosophy of the infinite and suggests future
research should pay attention to the dialectical process of students’ discourse and develop teaching
modules on the basis of Bolzano’s doctrine.
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1 Introduction
Concept of the infinite, as Fischbein, Tirosh, and Hess (1979) indicated, involves contra-
dictory nature, which is arisen from our experiential logic of finiteness. These inconsistent
phenomena prompted Aristotle to distinguish between potential infinity, an endless dynamic
process, and actual infinity, a static and completed object, and exclude the use of actual
infinity in mathematical domains. Such a distinction and argument, nonetheless, is an im-
practical attempt for professional mathematicians. Bolzano clearly declared that “most of the
paradoxical statements encountered in the mathematical domain. . . are propositions which
either immediately contain the idea of the infinite, or at least in some way or other depend
upon that idea for their attempted proof” (Bolzano, 1950, p. 75). Though it is not treated
as a realistic and physically existing entity in most mathematical fields, the infinite is no
doubt a significant element for understanding calculus. Even students familiar with alge-
braic operations are likely to encounter difficulties in capturing certain notions of infinite
processes. Owing to its central role in leaning calculus, the infinite consequently attracts
many researchers’ attention.

Piaget and Inhelder (1956) had earlier studied children’s understanding of infinity by in-
vestigating how children subdivide geometrical shapes. They claimed that only in the period
of formal operational stage could children continue indefinitely. Note that this work was
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merely dealing with children’s understanding of shape and space but not taking children’s
conceptions of number into account. Furthermore, Taback’s study (1975) on 8–12 year old
students’ concept of limit, involving rules of correspondence and convergence/divergence,
yielded inconsistent result with what Piaget and Inhelder indicated. Taback proposed three
possible explanations for this variance: (1) the visibility of limit point, (2) context of the
task (mathematical or non-mathematical), and (3) the difficulty of the task. For exploring
the effect of age and teaching, Fischbein, Tirosh and Hess (1979) investigated higher ages to
determine the resistance of the intuition of infinity. They declared the intuition of infinity is
relatively stable from 12 years of age onward and regular trainings in mathematics influence
only superficial understanding of the concept of infinity, leaving intuitions unaffected. Fis-
chbein et al. (1979) attributed the phenomena to contradictory nature of the infinite, which
evoke much consideration and discussion.

Contradictory nature of the infinite arises from intuitive extrapolation of our finite log-
ical scheme (Tall, 1980) and process-object duality of itself (Monaghan, 1986, 2001). The
former is manifested by Tirosh and Tsamir’s (1996) findings that students were more likely
to employ two intuitive rules: the one-one correspondence criterion and the part-whole rela-
tionship criterion, yet they were not aware of discrepancies when the two rules are conflicting
with each other. The latter can be understood by realizing that students tended to see in-
finity as a process on some occasions, while treat infinity as an object on others. Though
relative studies had suggested the intuition of infinity is relatively stable from 12 years of age
onward, such a contradictory nature even confused college students. Alcock and Simpson
(2004) investigated students’ perceptions regarding convergence of sequences and series in
a definition-based real analysis and found that students who had a good understanding of
key mathematical definition also had trouble employing definitions to construct appropriate
arguments about limit process. McDonald, Mathews, and Strobel (2000) also cited college
students could think of infinite lists as completed totalities. Namely, they were likely to
perceive the infinite as a single entity involving processes and objects, rather than separate
them. In this manner, the process-object duality of infinity might become a complicated and
unsteady construct in these mature students’ minds. Students’ intuitive perceptions regard-
ing the infinite are labile (Fischbein et al. 1979) and subject to tasks (Monaghan, 2001).
It is believed their unsound intuition become more observable while facing paradoxical ar-
guments and situations. Nonetheless, current students’ struggle with the infinite is by no
means exclusive for them. The present study aimed to reveal common barriers encountered
by historical figures and current students and highlight Bolzano’s significant contribution in
this regard.

2 Historical obstacles

Before 19th century, mathematicians in history had heavily relied on intuition to deal with
concept of the infinite. However, these intuitive approaches usually yield conflicting conclu-
sions. Aristotle had early indicated that the infinite is never fully exhausted in our thought,
therefore, it only potentially exists and the existence of actual infinity is not permitted.
Aristotle further added that:

Our account does not rob the mathematicians of their science. . . In point of fact
that they do not need the infinite and do not use it.

Physics III

Actually, Aristotle’s view of potential existence did strongly influence mathematicians’
science. It is well known that Euclid showed there are an infinite number of prime numbers.
However, Euclid did not declare it directly. Instead, he claimed:
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Prime numbers are more than any assigned magnitude of prime numbers.
the Elements IX

The statement obviously reflects Aristotle’s philosophy of the infinite.
Till the time of Renaissance, mathematicians made little progress in comprehending para-

doxical natures of the infinite. Galileo considered two concentric circles rolling over on a
straight line and perceived a one-one correspondence relationship between points on the
outer circle and inner circle. Could this observation lead us to conclude that the two con-
centric circles have equal number of points? If so, how about the length of circumferences?
If not, how to interpret the one-one correspondence relationship? With this doubt in mind,
Galileo turned to consider discrete cases: comparing the cardinality of three infinite sets
A = {1, 2, 3, 4, 5, . . .}, B = {12, 22, 32, 42, 52, . . .}, and C = {1, 4, 9, 16, 25, . . .}. A one-one
correspondence relationship can be identified among the three sets. However, it is also triv-
ial that there is a part-whole relationship among them. Can two relationships coexist? For
Galileo, the answer is negative. In his Two New Sciences, Salviati, a figure representing
Galileo’s view, asserted that:

This is one of the difficulties which arise when we attempt, with our finite minds,
to discuss the infinite, assigning to it those properties which we give to the finite
and limited; but this I think is wrong, for we cannot speak of infinite quantities
as being the one greater or less than or equal to another.

Such a paradoxical doubt remained unsolved until 19th century.
On the other hand, convergence issue of the infinite series also confused mathematicians

in the 17th and 18th century. For example, sum of the alternating series 1 − 1 + 1 − 1 + 1 −
1 + . . . had received much attention among mathematicians at that time and they was led
to contradictory results. Three competitive approaches may be presented as follows:

(1) 1 − 1 + 1 − 1 + 1 − 1 + . . . = (1 − 1) + (1 − 1) + (1 − 1) + . . . = 0

(2) 1 − 1 + 1 − 1 + 1 − 1 + . . . = 1 − (1 − 1) − (1 − 1) − . . . = 1

(3) Let S = 1− 1 + 1− 1 + 1− 1 + . . .. Since 1− 1 + 1− 1 + 1− 1 + . . . = 1− (1− 1 + 1−
1 + 1 − 1 + . . .) = 1 − S, we then haves S = 1 − S, therefore, S =

1
2
.

These seemingly reasonable but obviously mutually contradictory reasoning compelled
18th Italian mathematician Guido Grandi to feel that “the creation ex nihilo is quite possi-
ble” (Bagni, 2000). Leibniz also studied this absurd outcome and, based upon probability

argument, was convinced that
1
2

should be the correct answer:

If we stop the series at some finite stage, taken at random, it is possible to have
0 or 1 with the same probability. So the most probable value [italics added] is the

average between 0 and 1, so
1
2
. (Leibniz, 1715, cited in Bagni, 2000)

Jacopo Riccati endorsed Leibniz’s view by means of following geometric series in the case
of x = −1:

1 + x + x2 + x3 + . . . + xn + . . . =
x

1 − x
Furthermore, Euler also ignored the convergent condition of the series and asserted that:
(

1 +
1
x

+
1
x2 +

1
x3 + . . . +

1
xn

+ . . .

)
+ (x + x2 + x3 + . . . + xn + . . .) =

x

x − 1
+

1
1 − x

= 0

All of these reasonable but problematic mistakes cannot but urge Gauss to declare that:
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I protest against the use of infinite quantity as an actual entity; this is never
allowed in mathematics [italics added]. The infinite is only a speaking. . .

3 Cognitive obstacles

For identifying college students’ cognitive obstacles regarding the infinite, I conducted a
study investigating how Taiwanese college students perceived paradoxes involving the infinite.
There were 113 college engineering-majors participating in this study. Three questionnaires
consisting of 10 potentially paradoxical problems were administered to them prior to formal
teaching of limit concepts. The questionnaire items were composed of three parts: (1) com-
paring cardinalities of two infinite sets (e.g. compare the cardinalities of {1, 2, 3, 4, 5, . . .} and
{1, 4, 9, 16, 25, . . .}); (2) conflicting results of divergent series (e.g. three different sums for
the series, 1−1+1−1+1−1+ . . .); (3) Zeno’s paradoxes (the arrow paradox, the dichotomy
paradox, and the Achilles and tortoise paradox). Following the administration of the ques-
tionnaire, 11 of them were selected to participate in follow-up interviews for their clearer and
more completed, but may not be appropriate, written responses. These interviewees were
asked to explain their written responses and react to the interviewer’s further questioning.
The interviewer revealed contradictory statements they made, if any, and requested them
to defend their position (e.g. if they pointed out the cardinality of {1, 2, 3, 4, 5, . . .} is more
than the cardinality of {1, 4, 9, 16, 25, . . .}, yet meanwhile considered that the cardinalities
of {1, 2, 3, 4, 5, . . .} and

{
1, 22, 32, 42, 52, . . .

}
are the same). It was hoped, in this manner,

to elicit interviewees’ notions of infinity and help them to conceptualize the problems via
problematizing the concepts.

Data reported in this paper are those yielding from the 11 interviewees. In interview,
given the paradoxical nature of items, interviewees tended to accommodate conflicting con-
sequences by expressing various (either consistent or inconsistent) viewpoints and many of
them frequently shifted their perspectives back and forth. Their notions can be classified
into following different but intertwined categories.

3.1 Infinity as an identical object

Infinity was often seen by them as a considerably large number, which exists and is mea-
surable. Students in this study were likely to judge the cardinality on the basis of one-
one correspondence. Many of them claimed that the three infinite sets {1, 2, 3, 4, 5, . . .},
{1, 4, 9, 16, 25, . . .}, and

{
1, 22, 32, 42, 52, . . .

}
have the same cardinality (i.e., ∞) because of

the one-one relationship between them. Some changed their claims after reminding of the
part-whole relationship, yet still others insisted on this position. An interviewee Ling rejected
part-whole relationship without supportive argument, as shown in the following dialogue:

Interviewer: OK, then I am going to ask you a question. Suppose
A = {1, 2, 3, 4, 5, . . .} and
B = {1, 1 · 1, 1 · 2, 1 · 3, , . . . , 2, 2 · 1, 2 · 2, 2 · 3, . . . , 3, 3 · 1, 3 · 2, 3 · 3, . . .}, which
one has more elements?
Ling: I have no idea. Perhaps. . . [pondering]
Interviewer: We were talking about integers. Now I just put more decimal num-
bers in.
Ling: Still the same!
Interviewer: Still the same? Why?
Ling: It is just to compare the number.
. . .
Interviewer: What if I add

√
2 and

√
3 into the set B, that is, irrationals?

Ling: The same. They are all equal to infinity.



Oral presentations 389

The conversation apparently reveals a belief that all infinite objects have identical amount
of elements regardless of their forms.

3.2 The infinite as an indefinite/incomparable object
Owing to its uncertainty, several interviewees were inclined to see the construct of the infinite
as indefinite. For example, asked to judge the appropriateness of different approaches for
deriving sum of the alternating series “1 − 1 + 1 − 1 + 1 − 1 + . . .”, Yu considered that
neither”1 − 1 + 1 − 1 + 1 − 1 + . . . = (1 − 1) + (1 − 1) + (1 − 1) + . . . = 0” nor “1 − 1 + 1 −
1 + 1 − 1 + . . . = 1 − (1 − 1) − (1 − 1) − (1 − 1) − . . . = 1” are correct, since the last term is
uncertain. He consistently defended his position by claiming that, because the ultimate limit
is indeterminate, infinite series may not be computable, hence is incomparable. Another
student Shiang did not see part-whole relationship as appropriate criteria when comparing
set size:

Interviewer: You don’t think the size ofA = {1, 2, 3, 4, 5, . . .} and
B = {1, 4, 9, 16, 25, . . .} are comparable?
Shiang: No! Because their cardinalities are infinity
Interviewer: However, some claim that the set A contains more elements since
some numbers are skipped in B.
Shiang: But because. . . I mean. . . let’s compare the number of their elements. If
the set ends at the same number, the set A definitely contains more elements
than the set B. But you can never know at which it would end!
Interviewer: You don’t know at which it would end?
Shiang: So it is incomparable. It keeps going. . .
Interviewer: They are incomparable as long as they are never-ending. Is that
what you meant?
Shiang: Yes!
Interviewer: If I add more numbers 1·1, 1·2, 1·3, 1·4, 1·5, . . .2·1, 2·2, 2·3, 2·4, 2·5, . . .
into B, more decimal numbers, which one has more elements?
Shiang: More decimal numbers? . . . It is still incomparable!

Shiang consistently insisted the size of infinite sets or the sum of infinite series is incompa-
rable or incomputable since the last term is indefinite. He strongly held that all never-ending
objects are incomparable and the notion of indefiniteness is closely related to incomparability.

3.3 The infinite as an extension of finiteness
When comparing the sum of “S1 = 1+2+3+4+5+ . . .” and “S2 = 1+4+9+16+25+ . . .”,
a student Po asserted that S2 > S1, as every term of S2 is greater than or equal to its
corresponding term of S1:

Interviewer: Let’s compare the amount of S1, S2, and S3, . . . I don’t quite
understand what you have written on the questionnaire.
Po: I mean. . .The first term of S1 is as same as that of S2 and others are different
afterward.
Interviewer: Then?
Po: The problem claims S2 is less than S1. In fact, S2 is larger than S1.
Interviewer: So, you don’t think the inference made by the problem is correct
because, after the second term, each term of S2 is larger than each term of S1?
Po: Yes!

Po’s conception endorsed Tall’s (1980) claim that concept of infinity is an extrapolation
of our finite logical scheme and students tended to view infinity as an extension of finiteness.
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Another paradoxical argument “1− 1
2

+
1
3
− 1

4
+

1
5
− 1

6
+ . . . = 0” was also shown to students

and Po rejected this result by saying that the total of this infinite series cannot be zero
since sum of the initial 10 terms is positive. As to the case of infinite sets, Po agreed that
both A∞ = {1, 2, 3, 4, 5, . . .} and B∞ = {2, 4, 6, 8, 10, . . .} have the same cardinality because
A1 = {1} and B1 = {2}, A2 = {1, 2} and B2 = {2, 4}, A3 = {1, 2, 3} and B3 = {2, 4, 6}
all have equal cardinality. Clearly, Po’s judgment was based upon a belief that any results
obtained from finite situations can be applied to the infinite case.

3.4 The infinite as a limiting process
Three well-known paradoxes of Zeno were employed to investigate participating students’
perceptions of dynamic aspects regarding the infinite. Contrary to former tasks involving
arithmetic concept of numbers, Zeno’s problems are related to realistic context. For the
arrow paradox, dividing time into infinitely many instants, most of the interviewees did not
accept the arguments by declaring that each instant occupies a single position side by side
and therefore the arrow can move forward “moment by moment” as time goes by. A typical
view is shown below:

Interviewer: What do you mean by the arrow can make infinitely small movement
during an infinitely small moment?
Wei: I mean. . .no matter how time is divided, the arrow still moves a little bit.
Interviewer: Do you mean that the instant moment is not frozen, not equals to
zero?
Wei: Yes! For example, 0.000 000 01 second has time duration, so the arrow can
move.
Interviewer: So we were deceived by what Zeno said “the arrow does not have
time to move and is at rest during that instant”?
Wei: Yes!

Cornu 1991 and Milani and Baldino 2002 indicated students usually view infinitesimal as
a “limiting process”, which is approaching but never reaching to it. It appeared Wei were
likely to see instant as an infinitesimal notion of time.

Another approach that students used to controvert Zeno’s argument is physical laws.
They asserted the arrow would definitely fly forward because of the force placed on it. Ac-
cording to Newton’s law of motion, as they claimed, the arrow is always able to keep moving
despite of infinitely many middle points between the departure point and target. As for the
paradox of Achilles and the tortoise, students’ discourses were mainly confined within phys-
ical situations by stressing its absurdity without giving further supportive reasoning. One
student denied this paradoxical consequence because he did not think that motion could be
broken into infinitely many steps. There was only one interviewee associating this problem
with convergence of the sum of infinitely many vanishing time intervals.

4 Bolzano’s philosophy of the infinite

Despite widely pessimistic views regarding the infinite held by mathematicians during 18th

and 19th century, a Bohemian mathematician Bernhard Bolzano espoused a positive attitude
toward it and decided to face up to its paradoxical nature. His philosophy of the infinite was
reflected in his book Paradoxes of The Infinite which was first published in 1851, three years
after his decease. Unlike his colleagues, Bolzano was convinced of the actual existence of the
infinite and explored it in terms of the concept of set, a pioneering thought at the time. He
defined a set (Menge) as an aggregate “whose basic conception renders the arrangement of
its members a matter of difference, and whose permutation therefore produces no essential



Oral presentations 391

change” (Bolzano, 1950, p. 77). He insisted there exist beyond dispute sets which are infinite
and the set of all numbers is exactly that indisputable example. In a similar sense, any
mathematical laws operated on sets are required to be uniformly applied to all members.
Namely, the mathematical law like infinite series should also be uniformly applied to all
infinitely many members. In this manner, Bolzano was able to elucidate the paradoxical
nature of infinite series. He firstly criticized the customary proof for the geometric series,
which was usually processed in the following way:

S = 1 + e + e2 + e3 + . . . + en + en+1 + . . . in inf .

= (1 + e + e2 + e3 + . . . + en−1) + en + en+1 + . . . in inf .

=
1 − en

1 − e
+ en + en+1 + . . . in inf .

=
1 − en

1 − e
+ en(1 + e + e2 + . . . in inf .) (1)

=
1 − en

1 − e
+ en(S)

⇒ S =
1

1 − e

Bolzano declared that the sum bracketed on the right hand side of (1) cannot be regarded
as identical to S itself because it has indisputably fewer terms than the original S. He then
gave a more theoretical proof to show his sense of rigor (Bolzano, 1950, pp. 93–94). On the
basis of this argument, Bolzano therefore was empowered to resolve aforementioned Grandi’s
paradox. He asserted that if S = 1−1+1−1+1−1+ . . ., then 1− (1−1+1−1+1−1+ . . .)
cannot be equal to 1− S since the latter S had been fundamentally altered by removing the
first term. Consequently, neither Leibniz nor Riccati’s arguments are valid. More specifically,
this alternative series is not summable since the operation cannot be uniformly applied to
all members however we rearrange the sequence of its terms.

In my recent study, college students were also confused by the problem of comparing
ℵ[0, 1], representing the number of points within [0, 1], and ℵ[0, 2]. Apparently, ℵ[0, 1] and
ℵ[0, 2] both equal to ∞ in their minds, yet on the other hand, [0, 1] is contained in [0, 2]. I
found students who initially preferred one-one correspondence strategy rejected the one-one
mapping between the two segment (i.e., a ↔ 2a) and turned to argued that ℵ[0, 1] is less
than ℵ[0, 2] because L[0, 1] < L[0, 2] (L denotes the length). This seemingly inconsistent
conclusion is akin to the aforementioned reasoning of Galileo on concentric circles. Both
bizarre inferences were caused by employing discrete thought on continuous objects. In this
regard, Bolzano made a significant contribution by distinguishing continuous infinite from
discrete infinite. In terms of Bolzano, the set of all numbers refers to the aggregate of all
integers only and the set of all quantities consists of all real numbers. He claimed that one-one
correspondence and part-whole relationship may coexist between two continuous segments
without contradiction. He took [0, 5] and [0, 12] as an example to clarify his idea. Though
the former is clearly contained in the latter, a one-one correspondence relationship also holds

between each single number of both sets, such as 3 and 4 are mapped to 7
1
5

and 9
3
5
:

[0, . . . , 3, . . . , 4, . . . , 5]

[0, . . . , 7
1
5
, . . . , 9

3
5
, . . . , 5]
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For resolving this paradox, Bolzano reminds us that:

We do wrong to confine our attention exclusively to what is called geometrical
ratio. We should pay heed to everything that belongs hither, in particular to the
arithmetical differences (p. 100).

In Bolzano’s view, contradiction is often caused by our single dimensional perception of
the structure of numbers. Namely, the dual natures of continuous infinite rationalize the
dual relationships (one-one and part-whole) among them. Nevertheless, Bolzano made no
further attempt to elaborate on the discrete case, which has been credited to Cantor’s work.

5 Conclusion and discussion

After a brief survey of research findings on students’ ways of comparing infinite sets, Tsamir
and Drefus (2002) indicated four common approaches that students were likely to use: (1) see-
ing infinity as a single entity (all infinite sets are equal) (2) comparing the size of infinite sets
by observing from which subset more and longer intervals have been omitted (3) considering
a set that is strictly included in another set has fewer elements than that other set (i.e.,
part-whole relationship) (4) treating infinite sets as incomparable. The present study sup-
ports previous research findings in this respect. Moreover, Tsamir and Drefus noted students
usually exhibited no particular tendency to use one-one correspondence and Waldegg (2005)
also claimed, as compared to Cantor’s one-one correspondence for establishing his theory
of infinity, Bolzano’s criterion, based on the part-whole relationship, is more intuitively ac-
ceptable by students. This study, however, yielded somewhat different results. Seven of
the eleven interviewees showed higher tendency to employ one-one correspondence as final
criterion while facing conflicting situations. They not only implemented one-one correspon-
dence on the problem of comparing infinite sets, but also on the problems of comparing the
cardinality of infinite series. They also tended to estimate the sum of infinite series on a
term-by-term basis, which is a one-one conception, regardless of the representation of the
tasks.

As aforementioned observations, the present study found Taiwanese college students had
behaved in the similar way with those of mathematicians in history, employing unstable
intuitive approaches for resolving paradoxical doubts. They regularly changed positions back
and forth when confronting conflicts. Though conception of the infinite is counter-intuitive
in nature, future study should pay more attention to the dialectical process of students’
discourse for detecting core beliefs and help them to develop a logic-based reasoning about
the infinite. In this regard, Bolzano’s working philosophy of the infinite could serve as an
appropriate role model for developing teaching modules and its effect should deserve further
investigation.

References

– Alcock, L., Simpson, A., 2004, “Convergence of sequences and series: interactions between
visual reasoning and the learner’s beliefs about their own role”, Educational Studies in
Mathematics, 57(1), pp. 1–32.

– Bolzano, B., 1950, Paradoxes of The Infinite, New Heaven : Yale University Press.

– Cornu, B., 1991, “Limits”, In D. Tall (Ed.), Advanced Mathematical Thinking, The
Netherlands : Kluwer Academic Publishers, pp. 153–166.

– Fischbein, E., Tirosh, D., Hess, P., 1979, “The intuition of infinity”, Educational Studies
in Mathematics, 10, pp. 3–40.



Oral presentations 393

– Fischben, E., 2001, “Tacit models and infinity”, Educational Studies in Mathematics 48,
pp. 309–329.

– McDonald, M. A., Mathews, D. M., Strobel, K. H., 2000, “Understanding sequences: A
tale of two objects”, in E. Dubinsky, A. Schoenfeld, and J. Kaput (eds.), Research in Col-
legiate Mathematics Education IV, pp. 77–102, Providence, RI : American Mathematical
Society.

– Milani, R., Baldino, R., 2002, “The theory of limits as an obstacle to infinitesimal anal-
ysis”, Proceedings of PME26 conference, pp. 345–352.

– Monaghan, J., 1986, Adolescent’s Understanding of Limits And Infinity, Unpublished
doctoral thesis, University of Warwick, U.K.

– Monaghan, J., 2001, “Young people’s ideas of infinity”, Educational Studies in Mathe-
matics, 48(2/3), pp. 239–257.

– Piaget, J., Inhelder, B., 1956, The Child’s Conception of Space, London : Routledge.

– Tall, D., 1980, “The notion of infinite measuring number and its relevance in the intuition
of infinity”, Educational Studies in Mathematics, 11, pp. 271–284.

– Tirosh, D., Tsamir, P., 1996, “The role of representations in students’ intuitive thinking
about infinity”, International Journal of Mathematics Education in Science and Tech-
nology 27, pp. 33–40.

– Tsamir, P., Dreyfus, T., 2002, “Comparing infinite sets — a process of abstraction: The
case of Ben”, Journal of Mathematical Behavior 21, pp. 1–23.

– Waldegg, G., 2005, “Bolzano’s approach to the Paradoxes of Infinity: Implication for
teaching”, Science and Education 14, pp. 559–577.


