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Abstract

The existence of a very close relation between Mathematics and Physics during their historical
development is mostly considered to have a motivational power for the educational praxis. In this
paper we discuss about a genetic didactic approach to teaching and learning of mathematics. It
is an approach inspired by history in which the integration of genetic ‘moments’ in the history of
Mathematics and Physics can lead to the development of activities for the learning mathematical
topics. In our case we present the designing of activities for the purpose of introducing first-year
undergraduates of the Department of Mathematics in Athens’ University in Greece to the definite
integral concept and the Fundamental theorem of Calculus, exploiting historical elements from the
mathematical study of motions in the later Middle Ages (14th century: Merton College, N. Oresme).
The designing of the activities was based on motion problems and mainly on the velocity — time
representation on Cartesian axes, in which velocity, time, and distance covered are represented si-
multaneously: velocity and time as line segments, and distance as area of the figure between the curve
and the time axis. By interrelating the distance covered with the areas of the corresponding figures,
the students are led to realize the connection between velocity and distance covered in the same graph,
and thus to grasp the essential point of the fundamental theorem of Calculus. The educational in-
tervention was a part of a wider action research aiming to study the difficulties which students faced
trying to bridge the gap between intuitive-informal and formal mathematical knowledge. The instruc-
tive approach was applied in an interactive milieu. In this paper we present: (1) elements of the
History of Mathematics and Physics which we used in the designing of the activities, (2) the didactic
aims of the activities, (3) an excerpt of a student’s interview, and (4) some observations concerning
theoretical issues, and results from the analysis of the data collected.

1 Introduction
The history of mathematics may be a useful resource for understanding the processes of
formation of mathematical thinking, and for exploring the way in which such understanding
can be used in the designing of classroom activities. Such a task demands that mathematics
teachers be equipped with a clear theoretical framework for the formation of mathematical
knowledge. The theoretical framework has to provide a fruitful articulation of the historical
and psychological domains as well as to support a coherent methodology. This articulation
between history of mathematics and teaching and learning of mathematics can be varied.
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Some teaching experiments may use historical texts as essential material for the class, while
on the other hand some didactical approaches may integrate historical data in the teaching
strategy, and epistemological reflections about it, in such a way that history is not visible in
the actual teaching or learning experience.

We used a teaching approach inspired by history. In particular, we used a genetic
approach to teaching and learning. According to Tzanakis and Arcavi (2000):

It is neither strictly deductive nor strictly historical, but its fundamental thesis is
that a subject is studied only after one has been motivated enough to do so, and
learned only at the right time in one’s mental development. . . . Thus, the subject
(e.g. a new concept or theory) must be seen to be needed for the solution of
problems, so that the properties or methods connected with it appear necessary
to the learner who then becomes able to solve them. This character of necessity
of the subject constitutes the central core of the meaning to be attributed to it
by the learner.

From such a point of view, the historical perspective offers interesting possibilities for a
deep, global understanding of the subject, according to the following scheme (Tzanakis &
Arcavi, 2000): (1) Even the teacher who is not a historian should have acquired a basic
knowledge of the historical evolution of the subject. (2) On this basis, the crucial steps
of the historical evolution are identified, as those key ideas, questions and problems which
opened new research perspectives. (3) These crucial steps are reconstructed, so that they
become didactically appropriate for classroom use.

In our case the reconstruction enters history implicitly. It means that a teaching sequence
is suggested in which use may be made of concepts, methods and notations that appeared
later than the subject under consideration, keeping always in mind that the overall didactic
aim is to understand mathematics in its modern form.

2 The historical background of our teaching experiment

We focus on historical elements from the mathematical study of motions during the later
Middle Ages (14th Century), and mainly on the role of both the geometric representations of
motions and the Euclidean geometry, to the emergence of Calculus concepts. The study of
motions at 14th century was based on the study of movements at the antiquity. The unique
mathematical tool of study and representations of movements was the Elements of Euclid.

2.1 Genesis of mathematical Physics

The philosophical problem which gave stimulus to kinematics was the problem of how qual-
ities (or other forms) increase in intensity. In the technical vocabulary of the schoolmen,
this was called the problem of the intension and remission of forms, that is the increasing
and decreasing of the intensity of qualities or other forms. Form is every quantity or quality
e.g., the local motion, qualities of every kind, the light, the temperature, the velocity. . .

Duns Scotus, during the early years of 14th century assumed a quantitative treatment
of variations in intensity of qualities suffered by bodies. It was accepted by the successors
of Scotus that the increase or decrease of qualitative intensity takes place by the addition
or subtraction of degrees of intensity. With this approach to qualitative changes accepted,
the Merton schoolmen applied various numerical rules and methods to qualitative variations
and then by analogy to kindred problems of motion in space.

Tomas of Bradwardine in his Treatise on the Proportions of Velocities in Movements
of 1328, using the theoretical considerations of William Ockam, made the distinction between



Workshops based on pedagogical and didactical material 299

dynamics and kinematics, saying that the temporal nature of movement demands only exten-
sion or space through which the movement take place. Bradwardine’s junior contemporary
Richard Swineshead explicitly added time as a kinematic factor:

. . . it should be known that its velocity is measured simply by the line described
by the . . . moving point in such and such time. . . (Clagett, 1959).

We can say that the interest concerning the quantitative study of the qualitative variations
led to the mathematical Physics.

2.2 The emergence of kinematics at Merton College (Oxford, ∼1320–1350
A. C.)

The most famous mathematicians at Merton in the first half of 14th century were: (a) Tho-
mas Bradwardine (1295–1349), and (b) the mathematicians-logicians William Heytesbury
(1313–1372), Richard Swineshead (flourished ∼ 1344–1354), and John Dumbleton (flourished
∼ 1331–1349), known as Calculators. They considered intension or latitude of velocity as
an arithmetic value (degree) in relation to extension or longitude, namely the time of the
movement.

Let us describe the definitions of motions and the Mean Speed Theorem (MST) of the
Merton kinematics (Clagett, 1959):

William Heytesbury said (Rules for Solving Sophisms — Part VI. Local motion):

. . . of local motions, that motion is called uniform in which an equal distance is
continuously traversed with equal velocity in an equal part of time. . .

Non-uniform motion can, on the other hand, be varied in an infinite number of ways,
with respect to time. . .

The definitions of instantaneous velocity, uniformly and non-uniformly accelerated motion
were given by Heytesbury as follows:

. . . In non-uniform motion the velocity at any given instant will be measured
(attendur) by the path which would be described by the moving point if, in a
period of time, it were moved uniformly at the same degree of velocity (unifirmiter
illo gradus velocitatis) with which it is moved in that given instant. . .

. . .For any motion whatever is uniformly accelerated (uniformiter intenditur) if,
in each of any equal parts of the time whatsoever, it acquires an equal increment
(latitudo) of velocity.

. . .But a motion is non-uniformly accelerated when it acquires a greater increment
of velocity in one part of the time than in another equal part.

The Mean Speed Theorem (M.S.T) of Merton College is one of the most important
results of the Merton studies in kinematics. It gives the measure of uniform acceleration
in terms of its medial velocity, namely its velocity at the middle instant of the period of
acceleration.

William Heytesbury in Regule solventi sophismata said (Clagett, 1959, p. 262):

. . .Thus the moving body, acquiring or losing this latitude (increment) uniformly
during some assigned period of time, will traversed a distance exactly equal to
what it would traverse in an equal period of time if it were moved uniformly at
its mean degree of velocity. . . . For every motion as a whole, completed in a whole
period of time, corresponds to its mean degree — namely, to the degree which it
would have at the middle instant of the time.
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Swineshead in De motu said (Clagett, 1959, p. 244):

. . .Furthermore, any difform motion corresponds to some degree [of velocity]. . .

The uniform acceleration theorem and the above statement of Swineshead lead to the
emergence of the mean value theorem of the Integral Calculus.

In the 14th century, there were many attempts to give a formal proof of the M.S.T. These
proofs were basically of two kinds: arithmetical, which arose out of Merton College activity,
and geometrical, mainly by N. Oresme at Paris (1350–60 A. C.).

2.3 The application of two-dimensional geometry to kinematics given by
Nicole Oresme

Oresme (1323–1382 A. C.) used the definitions of motion expressed by Calculators at Merton
College. As examples of Oresme’s geometrical model of motion representation let us consider
the accompanying rectangle and right triangle (fig. 1).

Figure 1

Each figure measures the quantity of some quality (velocity). Line AB in either case
represents the extension (time) of the quality. But in addition to extension, the intensity
of the quality from point to point in the base line AB has to be represented; this Oresme
represented by erecting lines perpendicular to the base line, the length of the lines varying as
the intensity varies. Thus at every point along AB there is some intensity of the quality, and
the sum of all these lines is the figure representing the quality globally. Now the rectangle
ABDC represents a uniform quality, since the lines AC, EF , BD represent the intensities of
the quality at points A, E, and B (E being any point at all on AB) are equal, and thus the
intensity of the quality is uniform throughout. In the case of the right triangle ABC, it is
equally apparent that the lengths of the perpendicular lines representing intensities uniformly
increase in length from zero at point A to BC at B, in accordance with Merton College’s
definition of uniformly accelerated motion.

Oresme designed the limiting line CD (or AC in the case of the triangle) as the line
of summit or the line of intensity. This is comparable to a ‘curve’ in modern analytic
geometry. He suggested the fundamental idea of the total quantity of velocity which arises
from considering both speed and time through which the movement continues. The total
quantity of velocity is measured by the area of the figure, is also known as total velocity, and
represents the distance traversed.

We can say that this idea of Oresme was the genetic moment of the two-dimensional
representation of a function that led to Cartesian representation two centuries later. Using
a general figure 2:

Notice that: (1) The curve or summit line is representing a ‘function’ expressed verbally
instead of by algebraic formula, the verbal expressions of the functions being ‘a uniform
velocity’, ‘a uniformly non-uniform velocity’, etc. (2) The variables of these ‘functions’ of
Oresme are: (i) the intensity of the velocity, (ii) the extent (time), and (iii) the quantity of
the velocity, represented by the area of the figure (distance covered), known as total velocity.
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Figure 2

Translating, now, the definitions of instantaneous velocity, uniformly accelerated and
non-uniformly accelerated motions, given by Calculators, applying the representation model
of Oresme on the Cartesian axes, we obtain:

(1) A discrete approximation of constant changing velocity in which, in equal chosen time
intervals, we have equal increments of velocity (fig. 3). At the instant A of the time axis
the instantaneous velocity is represented by the line AB. The instantaneous velocity of
a particle can be measured by the distance covered if, in a period of time, the particle is
moved uniformly at the same degree of velocity (i.e. the shadowed rectangle ABCD).

Figure 3 Figure 4

(2) Uniformly accelerated motion (fig. 4): In each of any equal parts of time the particle
acquires an equal increment of velocity.

(3) A discrete approximation of non-uniformly accelerated motion (fig. 5): The particle
acquires a greater increment of velocity in one part of time than in another equal part.

Figure 5
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Making the transition from the geometric representations to the algebraic context using
modern symbols, we obtain easily the algebraic formulas concerning the uniform (fig. 6) and
uniformly accelerated motion (fig. 7, 8).

Figure 6 Figure 7 Figure 8

Notice that: U(t) being the velocity function, S(t) the position function, E(t) the function
of the area of the figures and a the acceleration.

Now since the basic kinematic acceleration theorem (M.S.T) equates a uniformly acceler-
ated velocity with a uniform speed equal to its mean in so far as the same space is traversed
in the same time, the geometric proof of this theorem using Oresme’s system must show that
a rectangle whose altitude is equal to the mean velocity, is equal in area to a right triangle
whose altitude represents the whole velocity increment, i.e., a line equal to twice that of the
altitude of the rectangle (fig. 9).

Figure 9

3 Designing didactic activities inspired by History of
Mathematics

The activities are based on motion situations and problems which are familiar to students’
experience, and particularly on (V-t) graph representations of motions. The didactic aim
was to introduce first-year undergraduate students to the definite integral concept and the
Fundamental theorem of Calculus. The velocity-time graph on which all the varied magni-
tudes of motion (time, velocity, distance covered) are represented, plays a central role in the
designing of the activities. Students are led to approach intuitively the mathematical con-
cepts. This process aims at: (1) the stimulation of students’ mathematical reflections via the
velocity-time representations of motion problems, (2) the understanding of the connection of
distance covered with the area of figures and the interrelation of velocity with the distance on
the same graph as a first contact with the Fundamental theorem of Calculus. The final aim
is to create the opportunity to let formal mathematics emerge, instead of trying to bridge
the gap between informal and formal knowledge, and the understanding of the concepts, not
only as tools for solving problems, but also as mathematical objects. The activities were
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given to students of the Mathematics Department in Athens University, during two summer
semesters (2002 and 2003) as an introduction to Integral Calculus.

We applied our teaching approach to 83 students. The course consisted of eight one-hour
teaching sessions based on the theoretical context of didactic situations of Brousseau (1997),
in a didactic milieu. During the experimental teaching the students worked in pairs in the
classroom using worksheets.

Sixteen students were interviewed individually. Our aim was to investigate the students’
difficulties, the degree of understanding of the concepts, the connections between the initial
activities and the subsequent formal mathematical knowledge. This means that we wished to
investigate whether the students could justify mathematically their initial intuitive choices
in the activities.

3.1 Activities I (worksheets)

A series of thirteen activities were given to the students. We briefly discuss the didactic aims
of a part of them:

The aims of the three initial activities were: (1) the representation of given motion using
velocity-time graph, (2) the transition from a table or a graph to the algebraic formula of the
velocity function, and (3) the calculation of the distance covered and its interrelation with the
area of the figure under the velocity curve. In these activities we used step functions, keeping
in mind two things: (a) the definitions of instantaneous velocity and uniformly accelerated
motion of Merton College and, (b) the construction by the students, right from the beginning,
of model of successive rectangles aiming to be extended and employed for the partition of
curvilinear regions in order to calculate their areas.

The 4th activity was important. Not only did the students approximate the linear velocity
function (in the case of uniformly accelerated motion) by step functions, but also they proved
that the position function and the area function of the region below the velocity curve are
equal. It is a ‘geometric’ proof of the Fundamental theorem of Calculus using the velocity —
time graph and the introductory hypotheses of the activities. We give an example of the
worksheet and an excerpt of the interview given by Peter, a first-year undergraduate (Farmaki
& Paschos, 2007b):

4th ACTIVITY:
• Consider that a material point begins its movement from rest and moves so that, in

each of any equal parts of time, it acquires an equal increment of velocity.
Consider moreover that the time intervals are infinitely small.

1. Give graphic representation of the velocity function vs. time, if t ∈ [0, 1], and
Vfin. = 2 m/s, (t in sec).

2. Express the velocity as a function of time (give the formula).
3. Calculate the distance covered using the graphic representation.

Peter and his collaborator wrote without any explanation on the worksheet (fig. 10):

Figure 10
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3.2 The interview (parts of an episode) and its content analysis
We asked Peter: ‘why do you draw a straight line for the representation of the velocity
function vs. time?’

(1)Peter: . . . because the assumption says that the time intervals are infinitely small we

(2) consider a denominator ν, so that each [time] interval is increased by
1
ν

. As ν increases,

(3)
1
ν

tends to zero, that is to say, for very big ν this becomes almost infinitely small. . .

(4) thus we can draw the velocity on the V-axis, increasing [the velocity] at every instant by
(5) an equal width, because we know that in each of equal parts of the time, it acquires an
(6) equal increment. Hence the slope, in these small triangles which are created, is the
(7) same.

Analysing Peter’s statements we can say that:
He justifies mathematically their choice to draw the velocity as a linear function, exploiting
the assumption and the graphic representation of the step function. He is led intuitively to
the creation of a sequence of step functions because the width of the “steps” continuously

decreases as
1
ν
→ 0, as he said in (2–3). He considered that this sequence of step functions

“approximates” the required graphical representation of the linear velocity function, using a
snapshot of the family of step functions. Peter considered explicitly that the vertical sides
of the triangles are equal for the selected partition (3–7), mentioning the constant slope of
hypotenuses of all right triangles.

. . .The researcher asked Peter:
(26) Researcher: Here you have made this curve (the researcher shows on the right side
(27) of the figure 10 above). This should be a graph of velocity vs. time. Why did you
(28) draw this graph?
(29) Peter: I think that. . . , I tried to explain to the girl (to his interlocutor), something
(30) about, . . . because we had some disagreement about this. (Peter shows the graph of
(31) the step function on the worksheet, figure, . . . ).
(32) R: Could you give me an explanation?
(33) P: I do not remember exactly her question. . . She asked me why these increments of
(34) velocity are equal. I tried to explain that in equal time intervals the velocity acquires
(35) equal increments.
(36) R: Why did you draw the curve? (the researcher shows the curve again on the
(37) worksheet).
(38) P: Here it is not precisely the same. No, . . .because this [curve] is not a linear
(39) function.

From the lines (26–39), we consider two basic observations:

(a) There is interaction between the students in the classroom. Their “disagreement”
activated Peter to give explanations about the choice of the linear function, which
obviously, is Peter’s choice.

(b) Peter devises the graphical representation of a function which does not satisfy the as-
sumption. He draws the graph of a nonlinear function, then divides the time axis into
equal intervals and observes that the corresponding increments of the velocity are not
equal. Then he compares this graph with the linear function’s graphical representation
in order to show to his interlocutor that only the linear function satisfies the assump-
tion. We consider that Peter makes one more essential step. Not only does he focus
continuously on the assumption by which he is led to the linear function of velocity, but
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also he recognizes that only the linear function fits in the assumption, giving a suitable
counterexample. Indeed, Peter does not rely exclusively on intuitive arguments, but
goes on to mathematical justification.

We could describe the mental course of Peter, as it seems from the episode, in the following
way; he is led, by the family of step functions, to the linear function of velocity in order to
retain the assumption and reversely. Only at the linear function of velocity we have equal
increments in equal time intervals. He says: ‘Here it is not precisely the same. No, . . .because
this [curve] is not a linear function’ (38–39).

3.3 Activities II (worksheets)
Let us return to the activities:

In the next activity the students proved easily the Mean Speed Theorem of Merton
College, using propositions of Euclidean geometry in the same manner employed by Oresme.

The 11th activity concerning the calculation of the area of the parabolic region was
divided into two phases. In the first phase we gave the students enough time to work on
the problem. Some students divided the time interval in equal parts taking upper and lower
sums of rectangular areas. It was a process that had been learned during the previous year
in high school. Others found it hard to continue. In the second phase (activity 11th, B) the
given activity concerning the calculation of the parabolic region area was guided (the activity
11–B and a few attempts by some students in the first phase are presented in the copies of
the activities given to the participants of the workshop).

In the next (12th activity) a moving particle changes direction at some instant. This
means that the sign of the velocity changes and the displacement of the particle and the
distance covered are not equal throughout the time interval. In the commentary of this
activity we discuss the relations between displacement, distance covered and area of regions
on the velocity — time graph.

The 13th is a guided activity aiming at a proof of the Fundamental theorem of Calculus
in the case of a nonnegative, continuous and increasing velocity function concerning a non-
uniformly accelerated motion, using the velocity-time graph. Let us refer to a theoretical
issue concerning the relationship between rates and totals.

4 The multiple linked representations between rates and
totals

Kaput (1999), states that:

Situations or phenomena admitting of quantitative analysis almost always have
two kinds of quantitative descriptions, one describing the total amount of the
quantity at hand with respect to some other quantity such as time, and the
other describing its rate of change with respect to that other quantity. . . .The
understanding of the two-way relations between totals and rates descriptions of
varying quantities (and the situations that they describe) is a fundamental aspect
of quantitative reasoning. It is exactly this relationship that is at the heart of the
Fundamental theorem of Calculus, and indeed, at the heart of Calculus itself.

Kaput illustrated the relations between the representations of total and rates as follows
(fig. 11):

Through these connections between rates and totals we take advantage of linked
representations, so that we not only can connect graphs and formulas, but also
we can cross-connect, for example, a rate graph to a totals formula.



306 Theodorus PASCHOS, Vassiliki FARMAKI

Figure 11

Figure 12

Figure 13
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As we mentioned, the velocity-time graph plays a central role in the activities we pre-
sented. We call this representation holistic because of two important reasons: (1) the holistic
representation allows the three functional variables to be represented differently on the same
graph (velocity and time are represented by lines in Oresmian sense and distance covered
by the area of a figure), and (2) the representation of the distance covered by an area, and
the interrelation of velocity with distance on the same graph, constitutes the students’ first
contact with the definite integral of the velocity function in a time interval, and the Fun-
damental theorem of Calculus in this case. Generally, according to Kaput, we can say that
in a holistic graph are represented simultaneously the “total quantity at hand with respect to
some other quantity such as time, and its rate of change with respect to that other quantity”.

Taking into account that the holistic graphs connect the representations of Rates and
Totals in a common ‘region’ we reconstructed this two-way relation (fig. 12). Thus this
representation in the same context of the two different quantitative descriptions may lead
the students to a better understanding of the two-way relations between totals and rates
(fig. 12).

In particular, in our case, the above scheme is formulated as follows (fig. 13):

5 Analysis of the data collected — results

We based the evaluation of our didactic approach mainly on the interviews’ content analysis.
We investigated the mental operations of the students, the difficulties and the understand-
ing of the mathematical concepts under consideration, using various appropriate theoretical
perspectives.

In particular, concerning the definite integral concept we connected and interrelated, in
a scheme, elements of different perspectives on the learning of mathematics: (a) the three
worlds of mathematics (Tall, 2004), (b) the realistic mathematics education (Gravemeijer &
Doorman, 1999), (c) the reflective abstraction (Piaget, 1972), (d) a mathematical concept as
a “tool” and an “object”, and their relation (Douady, 1991).

This scheme functions as follows: We want the students to approach the definite inte-
gral concept. Initially, the students make the transition from real life situations (motions
problems) to the embodied mathematical world (Tall, 2004), using the velocity-time graph in
which the concept is appeared as an area of a figure. They create models of solving particular
problems which evolve into models for mathematical reasoning (Gravemeijer & Doorman,
1999) into the proceptual mathematical world of symbols and processes. The students can
also make the transition from motion problems to the proceptual mathematical world using
previous knowledge from Algebra and Calculus. They act on mathematical objects such
as function, limit and graph, by the mental operations of the reflective abstraction (Piaget,
1972), for the construction of the definite integral concept as a tool (Douady, 1991) for cal-
culating areas of curvilinear regions. Then by generalization they make the transition to the
formal-axiomatic mathematical world where the definite integral concept is given by the for-
mal definition. We argue that the mathematical concept of the definite integral ‘connects’ the
proceptual and the formal mathematical worlds in a common region. Schematically (fig. 14):

The analysis of the data collected (pre-test, worksheets, interviews, post-test), according
to the theoretical perspectives which guided our research, led to four different categories
concerning the students’ mental operations.

Category A: The students make the transition from real life situations to the embod-
ied mathematical world (Tall, 2004) using the velocity-time graph and Euclidean geometry,
exploiting their experience and intuition. They take into account the assumptions and con-
straints of the activities. They create models of solving particular problems which evolve into
models for mathematical reasoning (Gravemeijer & Doorman, 1999) in the proceptual math-
ematical. The students act on mathematical objects such as function, limit, graph, by the
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Figure 14

mental operations of the reflective abstraction (interiorization, coordination, encapsulation
and generalization of mental schemata), (Piaget, 1972), for the construction of the definite
integral concept as a tool (Douady, 1991) for calculating areas. The students also approach
the Fundamental theorem of Calculus by coordination of the differentiation and integration
processes, as a mean of constructing a process which consists of reversing another one, by
exploiting the graphical context (Dubinsky, 1991). They are able to justify their initial in-
tuitive choices in the activities using statements, theorems and proofs in the context of the
formal mathematical world. Schematically (fig. 15):

Figure 15

Category B: The students in the initial activities use previous knowledge from Physics
without taking the assumptions into account. Then, they make the conversion in the pro-
ceptual world using symbols and formulas. However, they quickly make the transition to the
embodied mathematical world using the velocity-time graph in accordance with the activi-
ties. They create models of solving particular motion problems which evolve into models for
mathematical reasoning in the proceptual world. The students act on mathematical objects,
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in the same manner as category A, for the construction of the definite integral concept as a
tool for calculating areas of curvilinear regions. However, they cannot see the definite inte-
gral concept as an object through generalization in the context of the formal mathematical
world. The students extend their mathematical justification to give explanations concerning
their initial choices in the activities, but they can not express satisfactory statements of the
formal mathematical theory and recognize theorems that are implicit in the activities. They
have not made the passage to the formal world (fig. 16):

Figure 16

Category C: The students, without using concepts and formulas from Physics, as in the
previous category, act in the same manner as the students in category B. They create models
of the solution of motion problems which extend to models for mathematical reasoning, only
in the case of the construction of the definite integral concept as a tool for calculation of
areas. They cannot generalize, nor recognize elements of the theory in the activities or
express statements and definition of the formal theory.

Category D: The students make the transition to the embodied mathematical world
using the (v-t) graph and Euclidean geometry. They face many difficulties when trying to
pass to the proceptual world of symbols and processes: difficulties in translating (v-t) graphs
to algebraic formulas of velocity, difficulties which are connected with the understanding
of basic mathematical concepts such as limit and limit approximation, etc. The students
are not able to construct the definite integral concept as a tool for calculating areas in the
context of the activities. They cannot construct models for mathematical reasoning, since
they are constrained in an intuitive action strictly in the context of the activities. There is
no evidence that the students have approached the formal mathematical world.
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