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Abstract

This paper shows the foundations of the construction of a teaching sequence for the concept of
improper integral. Our sequence is based on the results of cognitive, didactic and epistemological
analyses. This paper focuses on the results of our epistemological analysis, showing the importance
of the use of the graphic register and the study of particular cases in the genesis of the calculations
of improper integrals.

1 Introduction

To define the Riemann integral of a given function within an interval [a, b] we need the
interval to be closed and the function to be bounded within that interval. When one of
these two conditions is not filled, we define the improper integral as a generalisation of the
Riemann integral. In this paper, we will refer to first type improper integrals, which are the
integrals of bounded functions within an infinite interval.

This concept, of multiple applications (probabilities, functional norms, distances, resolu-
tion of differential equations, Fourier transforms, . . . ), offers great resistance to undergrad-
uate students. Our research (González-Mart́ın, 2002) shows how students learn this concept
detached of any meaning and restricted to algebraic calculations and criteria. To face this
situation, we decided to create a teaching sequence trying to help the students to give a
meaning to this concept and to learn it combining graphical and algebraic information.

2 Theoretical framework

One successful approach to create teaching sequences is didactical engineering (Artigue,
1992). This methodology develops three analyses prior to the construction of the teaching
sequence. These analyses examine different dimensions (that interplay) of the mathematical
object in study. The three dimensions that are considered are: epistemological, didactic and
cognitive, and they are parallel to the classification of didactical obstacles given by Brousseau
in 19761:

1See Brousseau (1983), for instance.
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• The epistemological dimension associated with the characteristics of the knowledge at
stake2.

• The cognitive dimension associated with the characteristics of those who are to be
taught.

• The didactic dimension associated with the characteristics of the workings of the edu-
cational system.

In this paper we will briefly give some details of the didactic and cognitive analyses
and will give more details of our epistemological analysis, describing some procedures used
historically by mathematicians to calculate improper integrals. We will use the results of
these analyses to describe the main foundations of a teaching sequence we designed in order
to improve our students’ understanding of improper integrals. Some remarks will be discussed
at the end.

One of our major choices was to use the graphic register to improve our students’ un-
derstanding of improper integration, choice that was motivated by the results we found in
history. However, some research results have indicated Mathematics students’ reticence to
use the graphic register when they have to solve problems or to explain what they do. In
particular, this reticence appears to be greater at University level. On the one hand, the
lack of practice in lower levels makes it difficult for them to use this register in a natural
way; on the other hand, in Higher Teaching this register is usually accused of being “not
very mathematical”. However, its use may help to avoid numerous and long calculations or
may even be used as a “control” and “prediction” register for purely algebraic work.

Mundy (1987) has pointed out that students usually have only a mechanical understand-
ing of basic concepts of Calculus because they have not reached a visual understanding of
the underlying basic notions; in particular, he stated that students do not have a visual
comprehension of the integrals of positive functions being thought in terms of areas under
a curve (which confirms Orton’s (1983) and Hitt’s (2003) outcomes on the dominance of a
merely algebraic thought in students, even in teachers, when solving questions related to
integration).

Other authors’ works (Swan, 1988; Vinner, 1989) reinforce the hypothesis that students
have a strong tendency to think algebraically more than visually, even when pushed to a
visual thought. These authors consider that many of the difficulties in Calculus might be
avoided if students were taught to interiorise the visual connotations of the concepts of
Calculus.

Among our results (González-Mart́ın & Camacho, 2004), in accordance with the findings
stated above, we observed that non-algorithmic questions in the graphic register produce
great difficulties for students (who do not use this register regularly) or a high rate of no
answers. Many students do not even recognise the graphic register as a register for mathe-
matical work.

Our work takes into account, essentially, Duval’s (1993, 1995) theory of registers of semi-
otic representation and the importance to work coordinating at least two registers (in our
case, the algebraic register and the graphic register) to achieve a good understanding of
mathematical objects.

3 Didactic dimension of the improper integral
In many countries, the official programs to teach improper integrals remain very theoretical
or give little specification on how to teach them. In particular, the official program of the
course where improper integrals are taught in the Faculty of Mathematics at the University

2For more information about the use of epistemology in mathematics education, see Artigue (1995b).
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of La Laguna (Spain) comes from 1971. The program has evolved since then, but little
specifications are given about how to teach improper integrals. Indeed, in some programs
appears the expression “training in the calculation of primitives” (González-Mart́ın, 2006a).
One could think that with these guides, it is normal that many teaching practices reproduce
Cauchy’s practices in his Cours d’Analyse.

Figure 1

Our analysis of undergraduate textbooks (González-Mart́ın, 2006a) allows us to see that
improper integrals are usually presented in an algorithmic way. Usually, emphasis is put on
the learning of convergence criteria and only the algebraic register is used. The only graphs

that are usually shown are those corresponding to the functions
1
x

and
1
x2 to illustrate the be-

haviour of their integrals within the interval [1,∞) (see figure 1, from Anton, 1996). It seems
that the first programs were inspired by the Reform of Modern Mathematics (see Artigue
1995a), where a paradigm that is still in effect was established to teach improper integration
at university, with an algebraic and algorithmic character (entailing a minimum level of de-
mand both for the teacher and for the students). This paradigm, far from geometrical and
intuitive ideas, hides the historical methods used to calculate infinite areas.

The following section shows some of the consequences of this kind of teaching for the
students.

4 Cognitive dimension of the improper integral
After having analysed the official programs and textbooks, we had an impression that this
kind of algorithmic teaching should have an effect on the students’ conceptions about im-
proper integration.

To try to have a more accurate portrait of the students’ comprehension of improper
integration, and motivated by the lack of understanding of concepts we could notice in our
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students, we decided to undertake an investigation about the cognitive dimension of improper
integration, in addition to identify some difficulties, obstacles and errors that appear during
its learning (González-Mart́ın, 2002). To do this, we used non-routine and non-algorithmic
problems (see González-Mart́ın & Camacho, 2004) to analyse the students’ understanding,
following the theoretical framework of the registers of semiotic representation (Duval, 1993,
1995). One of our main objectives was to analyse in which register of representation students
prefer to work, in addition to observe whether the students made any graphic interpretation
of the results they obtained.

We created a questionnaire that was administrated to 31 first-year students, all of them
following the course where improper integration is presented, at the end of the semester. After
analysing the questionnaires, we selected six students on the basis of their answers and their
academic performance to be interviewed. The combined analysis of both the questionnaires
and the interviews allowed us to state the following3:

• To understand the concept of improper integral, many difficulties appear from a lack of
meaning of previous concepts, as limit, convergence, Riemann integral. . . (González-
Mart́ın & Camacho, 2002).

• Many students show a lack of coordination between the algebraic and the graphic
register; some even do not recognise the graphic register as a valid mathematical register
(González-Mart́ın & Camacho, 2004).

• Many students, due to the way in which Riemann integrals are usually taught, develop
the wrong conception that the integral is always an area and therefore must always
have a positive value.

• Many students develop purely operative conceptions of the integral, thinking of it as a
calculation, a procedure.

• Many students only use static models to think of the limit processes, what may pro-

duce difficulties to understand the function F (x) =
∫ x

a
f(t) dt and, as consequence, to

understand lim
x→∞

F (x) = lim
x→∞

∫ x

a
f(t) dt.

• Some students do not correctly interpret some criteria or use them in the wrong cases.

• Some mistakes with the use of algebra.

We have also identified the following two obstacles, inherent to the concept of improper
integral:

• The obstacle of bond to compactness: the tendency to believe that a figure will enclose
a finite area (or volume) if an only if the figure is closed and bounded.

• The obstacle of homogenisation of dimensions: the tendency to believe that if a figure
encloses an infinite area (or has an infinite length), the volume generated by revolution
will “inherit” this property and will also be infinite (or that the area under the curve
will “inherit” the property and will be infinite too).

Some of these difficulties and errors seemed to us to be deeply linked to the concept of
improper integral itself. At this point, an analysis of the epistemological dimension of the
improper integral became necessary. We also wanted to observe which registers had been
favoured by the mathematicians, particularly before a theory was established.

3More detailed information about the data analysis and the conclusions can be found in González-Mart́ın
(2002) and González-Mart́ın & Camacho (2004).
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5 Epistemological dimension of the improper integral
Trough this brief historical exposition, we can see that (as it usually happens in maths
history) operational ideas precede historically structural concepts. This fact should make us
wonder whether it is the same with our students.

5.1 Oresme’s unbounded configurations
The two first historical examples in our workshop are very illuminating ones by Nicole Oresme
(1325–1382). They appear in chapters III, 8 and III, 11 of Oresme’s Tractatus de configu-
rationibus qualitatum et motuum (ca. 1370), one of the oldest texts in which unbounded
portions of the plane with a finite area are exhibited.

Let us consider two squares with sides equal to 1 foot, thus having together a total area
of 2 square feet. Then let us divide one side of one of the squares (say, the lower horizontal
side of the second square) in the following way. We bisect the side, then we bisect the half on
the right hand side, then we bisect the quarter on the right hand side, and so on, infinitely
many times. We then consider the corresponding division of the whole square (figure 2a).

Oresme’s argument proceeds with a rearrangement of the parts, which obviously does
not alter the total area of the figures: we place the first half of the second square (part E)
on top of the first square adjusting it to the right; next we place the quarter of the second
square (part F ) on top of E adjusting it to the right; then we place the eighth of the second
square (part G) on top of F adjusting it to the right; and so on (figure 2b). Thus we obtain
an infinitely high plane figure, but the total area of 2 square feet is unaltered.

a) b)

Figure 2

The passage from figure 2a to figure 2b helps the student to understand that the un-
bounded plane figure on the right hand side must have a finite area. It is an easy and
meaningful example that will hopefully pave the way for the student’s acceptance of the
pertinence of studying improper integrals of the second type4. On the other hand, if the

4Of course it is anachronistic to call this an improper integral. Besides, it may rightly be argued that the
vertical border lines are not contained in the graph of a function with domain represented in a horizontal
axis. However, the horizontal lines constitute the graph of an infinite step function, the (improper) integral
of which is 2.
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figure 2b is rotated 90◦ to the right, the student may also see the area of an unbounded
figure (similar to a first type improper integral) of whom he knows a priori that the enclosed
area is finite, this fact helping to overcome the obstacle of bond to compactness described
above.

The example given by Oresme in section III, 11, which ends the treatise, is also pedagog-
ically important, both because it calls the student’s attention to improper integrals of the
first type, and because it is extremely easy to understand, once the case in section III, 8 has
been grasped.

Figure 3

5.2 Torricelli’s infinitely long solid
All Oresme’s examples are two-dimensional. The first three-dimensional instance of what we
should now call a convergent improper integral dates from around 1643 and is sometimes
called Gabriel’s Trumpet. It was the discovery of Evangelista Torricelli (1608–1647), in the
article “De Solido Hyperbolico Acuto”. By rotating a segment of an equilateral hyperbola
around its asymptote (say, revolving the curve x · y = constant for y ≥ 1, around the y-axis)
we obtain an infinitely long solid of revolution which, in spite of being unbounded, has a finite
volume (figure 4). Torricelli proved this in two ways: firstly using the method of indivisibles,
and later by the ancient method of exhaustion.

Figure 4

Because of its counterintuitive character, Torricelli’s solid had a very big impact on the
scientific community of the 17th century5. In England, for example, the mathematician
John Wallis (1616–1703) and the philosopher Thomas Hobbes (1588–1679) were involved in
a long lasting controversy around some mathematical topics, one of them being Torricelli’s
solid. Hobbes, who objected to the presence of infinity in mathematics, could not accept a
geometrical solid with so surprising features as having infinite superficial area but enclosing
a finite volume and, besides, having no centre of gravity. Wallis, on the other hand, had no
problems in considereing figures of the sort.6 Hobbes critisized Wallis, who answered:

5Mancosu (1996), p. 129.
6Wallis considereing unbounded figures with finite area or volume in his book Arithmetica Infinitorum,

published in 1655 in London.
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A surface, or solid, may be supposed so constituted as to be Infinitely Long, but
Finitely Great, (the Breath Continually Decreasing in greater proportion than the
Length increaseth) and so as to have no Centre of Gravity. Such is Torricellio’s
Solidum Hyperbolicum acutum; and others innumerable, discovered by Dr. Wallis,
Monsieur Fermat, and others. But to determine this requires more Geometry and
Logic than Mr. Hobs is Master of.7

Hobbes’ reply was:

I do not remember this of Torricellio, and I think Dr. Wallis does him wrong and
Monsieur Fermat too. For, to understand this for sense, it is not required that a
man should be a geometrician or a logician, but that he should be mad8.

The dispute continued until Hobbes’s death.
Historical controversies such as this one show how difficult it may be to understand some

unbounded geometrical objects. It is no wonder that present day Calculus students have
problems to imagine and to accept such figures.9

Gabriel’s trumpet is a pedagogically interesting example, although the reading of Torri-
celli’s whole paper would probably be too difficult for most undergraduate students. The
interested teacher is referred to the English translation of the indivisibilistic part in Struik’s A
Source Book in Mathematics, 1200–1800 (pages 227–231) and to the account of the whole of
Torricelli’s procedure in P. Mancosu’s Philosophy of Mathematics & Mathematical Practice
in the Seventeenth Century (pages 131–135).

5.3 Fermat’s quadrature of higher hyperbolas and parabolas
Torricelli also showed that the area under a curve y = xn comprehended between x = a and

x = b is equal to
bn+1 − an+1

n + 1
for natural numbers n. Pierre Fermat (1601–1665) proved

that the same relation holds for any rational number other than −1.
Fermat claimed that his “entire method is based on a well-known property of the geomet-

ric progression”, this being that, given a decreasing geometric progression, “the difference
between two consecutive terms of this progression is to the smaller of them as the greater
is to the sum of all following terms”10. Using modern algebraic symbols this means that,
if the decreasing geometric progression a1, a2, a3, . . . , an, . . . has sum S, then the equality
a1 − a2

a2
=

a1

S − a1
holds11.

Let us see Fermat’s quadrature of the higher “hyperbola” x2 · y = constant.
Let us consider a curve such that, for abscissas and ordinates like in figure 5, satisfies the

proportionalities
AH2

AG2 =
GE

HI
,

AO2

AH2 =
HI

ON
, . . .

Let AG, AH , AO, AM , . . . be taken in geometric progression on the x-axis.

AG

AH
=

AH

AO
=

AO

AM
=

AM

AR
= . . . implies

AG

AH
=

AH − AG

AO − AH
=

GH

HO
=

HO

OM
= . . . which means that also

7Quoted in Mancosu (1996), p. 146.
8Quoted in Mancosu (1996), p. 146–147.
9In section 3 we describe the bond to compactness and homogenisation of dimensions obstacles, which

are directly related to these figures.
10Struik (1986), pp. 219–220.
11This can immediately be proven equivalent to the more usual formula S =

a1

1 − r
.
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Figure 5

GH , HO, OM , MR, . . . constitute a geometric progression (with the same ratio). On the
other hand,

GE × GH

HI × HO
=

GE

HI
· GH

HO
=

AH2

AG2 · AG

AH
=

AH

AG
,

HI × HO

ON × OM
=

HI

ON
· HO

OM
=

AO2

AH2 · AG

AH
=

AH2

AG2 · AG

AH
=

AH

AG
, and so on.

Therefore, the rectangles GE × GH , HI × HO, ON × OM , . . . form a decreasing
geometric progression, the ratio of which is the reciprocal of the ratio common to both
increasing geometric progressions AG, AH , AO, AM , . . . and GH , HO, OM , MR, . . .
Now, applying the basic property concerning decreasing geometric progressions, we obtain
GE × GH − HI × HO

HI × HO
=

GE × GH

sum of the remaining rectangles
.

Since
GE × GH

GE × AG
=

GH

AG
=

AH − AG

AG
=

GE × GH − HI × HO

HI × HO
, we may conclude that

GE × GH

GE × AG
=

GE × GH

sum of the remaining rectangles
.

Therefore, GE × AG = sum of the remaining rectangles. Adding the first rectangle,
GE × GH , to both sides, we obtain the equality GE × AH = sum of all the rectangles.

The area of all these rectangles is clearly greater than the area under the curve. Fermat
used the concept of adæqualitas in order to express the limiting process that leads from the
former to the latter. He said that the rectangle GE ×GH , “because of infinite subdivisions,
will vanish and will be reduced to nothing”12; clearly the same also happens with all the
other rectangles (although not at the same speed). Fermat’s drew the conclusion without
going into details: “we reach a conclusion that would be easy to confirm by a more lengthy
proof carried out in the manner of Archimedes”13, this being that the area under the curve
is equal to the rectangle AG × GE.

Fermat’s procedure can be rendered in modern notation in the following way. Let a
denote the abscissa of the point G. In order to calculate the area of the unbounded region
limited by the curve x2 · y = k and the lines x = a and y = 0, we take points on the x-axis
with abscissas a, ar, ar2, ar3, . . . , arn, . . ., constituting an increasing geometric progression of

ratio r (with r > 1) and build rectangles of basis arn+1 − arn and height
1

(arn)2
, the areas

of which are:

GE × GH =
ar − a

a2 =
r − 1

a
, HI × HO =

ar2 − ar

a2r2 =
r − 1

a
· 1
r
,

ON × OM =
ar3 − ar2

a2r4 =
r − 1

a
· 1
r2 , . . .

12Struik (1986), p. 221.
13Idem.
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Thus, the areas of these rectangles form a decreasing geometric progression of first term
r − 1

a
and ratio

1
r

and, therefore, of sum S =
r−1

a

1 − 1
r

=
r

a
. The closer r is to 1, the better

these rectangles approximate the area we want to calculate. Fermat did not speak of limits,

but what he did is equivalent to replacing r by 1, thus getting the value
1
a

for the desired
area.

5.4 Some remarks

We have tried to show in this section that improper integrals appeared in the mathematical
scene as a generalisation of results. Indeed, the techniques used at the beginning are just a
generalisation of the techniques used to calculate areas.

The mathematicians that first tackled this new concept were rather interested in knowing
particular cases and in calculating them. There was not a general theory about improper
integrals, neither an a priori study of their convergence. On the other hand, some paradoxical
results produced some surprise, but the mathematicians’ attitude was to accept them as other
elements in the contemporary mathematical scenery (“to understand them requires more
knowledge of geometry and logic than the knowledge at Mr. Hobbes’s disposal”). However,
we must be aware that these results still nowadays produce astonishment and they can even
generate some obstacles, as we described in section 4.

It was in the 18th century that the point of view changed and mathematicians began to
be interested in studying the properties of the functions within the interval of integration.
However, the only new thing was the approach (now analytic instead of geometrical). It
was in the 19th century that a graphic approach appeared again, but this time covered with
a new formalism developed in the last years. In our opinion, this fact may produce that
the geometrical approach generally used to introduce the Riemann integral is completely
darkened by the notation to the students.

6 The design of our teaching sequence

The teaching sequence we designed tried to go back to the original setting in which appeared
the improper integral: the graphic one. We aimed at improving our students’ understanding
by going back to the graphic register and by interpreting the majority of the results graph-
ically. Moreover, the approach of our sequence was also the one that appeared in history:
to generalise some results already known to calculate areas. Besides, the interest in the
convergence and in the classification of results does not appear until a first approach to the
new concept has been made and some results using the tools the students already know are
discovered. Therefore, the development of more specific techniques will be subsequent to the
obtaining of a first classification of results.

When it came to designing our activities, we placed great importance on the variations
of the typical didactic contract and on the construction of an adequate medium14 for each
activity (Brousseau, 1988), so that it produced contradictions, difficulties or imbalances.
This initial condition of “no control” should prompt the students to adapt their approach
to the activity given. To promote this interaction, the medium was designed in such a way
that the students could use their knowledge to try to control it.

On the other hand, it was also designed to allow the students to work as autonomously
as possible and to accept the given responsibility. This didactic contract was completely new
for our students, so we began with situations close to them to provoke a gradual acceptance
of this new contract.

14We have chosen the term medium to translate the French milieu.
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6.1 Methodology
Our sequence was developed with First Year students of the Mathematics degree and about 25
students took part regularly. Inspired by history, we decided to articulate the graphic register
with the algebraic one and to reconstruct knowledge from previously studied concepts (series
and definite integrals), giving the students greater responsibility in their learning process.

Following history, the graphic register was first presented to interpret some results and
later to predict and apply some divergence criteria. On the other hand, we showed the
students some constraints of this register, which would make it necessary to use the algebraic
register. This way, the use of the graphic register, with its potentials and weaknesses, together
with the use of the algebraic register, would facilitate the coordination between both registers.

Our activities included the study of positive functions, at first, and the graphic interpre-
tation of the calculation of areas justified the definition by means of limits of the improper

integral with unbounded integration interval:
∫ ∞

a
f(x) dx = lim

b→∞

∫ b

a
f(x) dx (figure 6).

Figure 6 Figure 7

The study of the behaviour of these two integrals:

a)
∫ ∞

0
e−x dx = 1 b)

∫ ∞

1
x− 1

3 dx = ∞

made the students remark that two functions with a very similar graph (in particular when
handmade) may enclose quite different areas. This fact pushed the students to think of the
possibility to predict when the integral would diverge. In this situation, the graphic register
allowed the students to assure, if f(x) is positive, that if from a given value on f(x) ≥ k > 0,
the integral will then be divergent. This conclusion, together with the two already calculated
examples, let the students see the potentials of the graphic register to conclude divergence
of a given integral and its weakness to predict convergence, which justified the development
of more formal tools.

This way, students started to develop some intuitions about this new concept before
starting to institutionalise a theory, thus reproducing the historical process.

The graphic register and the use of the theory of series also allowed the construction of
useful counter-examples for questions that usually cause difficulties for students. For instance,
a non-negative function with no limit at infinity whose improper integral is convergent may

be built just by constructing a rectangle with area
1
n2 over each integer n (see figure 7).

This kind of examples help the students to see that it is possible to have non-bounded
functions whose improper integral is convergent. Also, that the fact of having a convergent
integral does not force the function to tend to zero. With this kind of examples, easy to
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construct and to understand using the theory of series, we wanted to give the students a
repertoire of functions to try to overcome the obstacle of bond to compactness (in this case,
a finite area is not enclosed by a closed and bounded line). More details of our activities and
our sequence can be found in González-Mart́ın (2006a), González-Mart́ın & Camacho (2004)
and González-Mart́ın (2006b).

6.2 Data collection, analysis and discussion
Our sequence was assessed in several ways. During its implementation some worksheets were
given to the students to be worked out in small groups, answering new questions using the
elements recently introduced; they were also asked to give the teacher a table of convergence
of the integrals of the usual functions and the resolution of some problems. The sequence,
globally, was evaluated by means of a contents test. Finally, the students also completed an
opinion survey about the most relevant aspects of our design.

Our classroom observations allow us to notice the students gradually accepted the graphic
register in order to formulate some conjectures from the moment the divergence criterion was
illustrated. The students were also asked to fill a table studying the convergence of the inte-
grals of the most usual functions and they used graphic reasoning to conclude the divergence
of the corresponding integrals and stated this register helps to avoid long calculations. More-
over, the work carried out in small groups was shared and the teacher gave his approval,
which helped to institutionalise this register as a mathematical register. Afterwards, in the
worksheets given to the students we can see how they use much graphic reasoning.

Furthermore, the students showed their satisfaction with the use of the graphic register
in their answers to the opinion survey (completed by 24 of the students who took part in
our sequence) and expressed that it had helped them considerably to better understand the
concepts.

On the other hand, in the contents test, done by 26 students, the questions that needed
the graphic register were answered by a higher percentage than in a group that had received
traditional instruction. More information about our data analysis can be found in González-
Mart́ın (2006a).

7 Conclusions

In this work we have shown some activities, related to the topic of improper integration, that
try to reinforce the mathematical status of the graphic register in university students. The
idea to actively use this register came firstly as a consequence of our analysis of the historical
appearance of improper integrals, and secondly as an attempt to improve our students’ un-
derstanding and to help them to overcome some difficulties linked to the concept of improper
integral. We could see that the work constructing examples and counter-examples, together
with the graphic interpretation of results, allows the students to recognise this register and to
accept it. Also, our students’ knowledge about improper integrals appeared to be stronger.

Therefore, there are still some open questions that need to be tackled in further research.
For example, the regular use of our sequence during a semester (and the effect on students’
attitude towards the graphic register) is an interesting question, as well as the integration
of some historical activities in our sequence to analyse the influence on our students’ under-
standing.
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