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Abstract

Several important aspects of Linear Programming are reviewed and commented: (1) the geometric
aspect and convexity, (2) the duality concept, (3) the sensitivity analysis on variables and coefficients,
(4) the links with Linear Algebra and systems of inequalities, and finally (5) the algorithms.

1 Introduction to linear programming and optimization
problems

In his book “Linear Programming and Extensions”, Dantzig (1963) presented a table to trace
back its History. Our intention is to perform a traveling on the roots of Linear Programming
and on its multidisciplinary aspects by using Dantzig’s references but with further emphasis
on the development of the mathematical tools.

Several important aspects of Linear Programming have been neglected in former studies
on the origins of Linear Programming: (1) the geometric aspect and convexity, (2) the duality
concept, (3) the sensitivity analysis on variables and coefficients, (4) the links with Linear
Algebra, (5) and the algorithms.

If we scan speedily the history of the optimization methods, we remember Lagrange’s
multipliers method for the optimization of constrained problems. Lagrange published his
essay in 1762, and also, in his “Théorie des fonctions analytiques” in 1797. After Cauchy,
who, in 1827, made the first application of the steepest descent method to solve unconstrained
minimization problems, we observe very little progress made afterwards until the middle of
the twentieth century. Dantzig’s table (1963) had given some key dates for the development
of linear programming, and some associated optimization methods. The development of
linear programming is mainly associated to such names as Kantorovich (1939) and Dantzig,
in 1947. Then, in 1951, Kuhn and Tucker provided the necessary and sufficient conditions
of optimality in non-linear programming.

2 Linear programming: objective function and linear
inequalities

A linear programming problem is to minimize a linear objective function f(x) = ctx subject
to a set of linear constraints Ax = b; x ≥ 0. These constraints may be equality or inequality
constraints. In the latter case, an inequality constraint can be converted to an equality
constraint by introducing a positive (negative) variable which is called a slack variable.
These constraints are hyperplanes, and the set of solutions is a convex polyhedron. Then, at
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least, one of the vertices of the convex polytope should correspond to the optimum solution.
Therefore the simplex or Dantzig algorithm was to compare the solutions at vertices in an
orderly way in order to find an optimal path towards the true solution. Figure 1 is taken from
Kantorovich’s 1939 article. It illustrates the feasibility convex region for a transportation
problem:

Figure 1 – Feasibility region for the best plan of freight shipments (Kantorovich, 1939)

3 Slack variables and solving systems of inequalities
In 1798, while he was working on problems of statics, J. Fourier had to solve systems of
linear inequalities. Again Fourier published on that particular topic in 1823, 1824, and 1826.
He then suggested that a theory of systems of such inequalities should be developed. He
even proposed that his method could be used in Geometry, Algebraic Analysis, Mechanics
(Statics), and Theory of Probability. Most probably, when he refereed on the theory of
probability, he had in mind the theory of errors in sciences of observations: “Donner au plus
grand écart, sa moindre valeur” i.e. a minimization process in the ℓ∞ norm. As for the
solution of his system of inequalities, Fourier described an elimination method by reducing
the number of variables, and a geometrical approach. From six inequalities and in the case
of two variables, Fourier built a convex polygon 123456 of the set of feasible solutions:

Figure 2 – Fourier’s polygon of solutions
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« Il faut remarquer que le système de tous ces plans (from the inequalities) forme un vase
qui leur sert de limite ou d’enveloppe. La figure de ce vase extrême est celle d’un polyèdre
dont la convexité est tournée vers le plan horizontal.» If the inequality decreased, the polygon
shrank towards a single point, the center of gravity. The next figure represents the famous
polyhedron of feasible solutions.

Linked to the problem of minimization in ℓ∞ norm is C. de la Vallée Poussin’s con-
tribution (1911). Again, he (VP) searched for a solution of an over-determined system of
equations, with applications to sciences of observations and the theory of errors. His pa-
per can be considered as a complement to his 1908 article on interpolation formulas (de la
Vallée Poussin theorem), but his approach to the minimization of the absolute value of the
largest error could be dangerous and sensitive to outliers. VP searched for a pure algebraic
approach. He introduced slack variables for residuals. He then selected the equations with
the worse residuals (by trial and errors) and minimized these residuals. By selecting his
equations, he was able to solve square systems of linear equations with the technique of
determinants. In parallel, the minimization in the ℓ1 norm has always represented a more
difficult problem. The first attempts came from Boscovich in 1750, and Laplace in 1786. The
first representation of the ℓ1 problem as a linear programming problem arose in 1955.

The main theoretical contributions to the theory of systems of linear inequalities came
from Germany and Eastern Europe. Paul Albert Gordan was born in Breslau, Germany
(now Wroclaw, Poland) and died in 1912 in Erlangen, Germany (1837–1912). Published in
1873, his theorem may be formulated as follows: in addition to the system of inequalities
Ax > 0 one considers the system of equations: Aty = 0; y ≥ 0, y ̸= 0. One of the two
systems has a solution. We should also mention that Gordan’s only doctoral student was
Emmy Noether.

We shall now comment on another Dantzig’s reference on Minkowski. In 1896, C. Her-
mite, the French Mathematician, after receiving Minkowski’s book Geometrie der Zahlen,
wrote: “Je crois voir la terre promise”! The seven pages of paragraph 19, chapter 1 exposed
his work on systems of linear inequalities, Minkowski proved that there are finitely many
“extreme” solutions, the vertices, such that every solution is a linear combination of these.
He also introduced the concept of “slack” variables. These slack variables became a paradigm
in LP. They introduced the precious notion of scarcity in a matrix system; moreover, they
established a method of communication between the different equations, and the utilisa-
tion of vector spaces. They enabled to build a method just as important than Legendre’s
contribution for the least squares method.

Julius Farkas was a Hungarian, born in 1847, who died in 1930. He was a physicist who
also did work on Mathematics, remembered for his 1902 theorem on inequalities. Inspired
by Fourier, his 27 pages article is more detailed than Minkowski’s paragraph on inequalities.
Finally, in 1936, Motzkin’s thesis provided the most comprehensive treatment of systems
of linear inequalities. Also, at the same time, Mathematicians such as L. L. Dines were
interested by convex hulls and linear inequalities, and the search of necessary and sufficient
conditions for the existence of a solution of a system of inequalities, and the duality.

4 Convexity

To the algebraic system of inequalities will correspond a geometric interpretation, in terms
of convex bodies. We already mentioned that LP constraints are hyperplanes, and the set of
solutions is a convex polyhedron. Then, at least, one of the vertices of the convex polytope
should correspond to the optimum solution. Therefore, it seems appropriate to review the
theory of convexity.

Convexity is an inter-disciplinary, heterogeneous field, which has two branches: geometry
and analysis (sets and functions). Notions of convexity probably came first from observations
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of nature: crystals, stones, trees, with the development of geometric figures such as circles,
squares, rectangles, cylinders, etc. One could quote the Pythagoricians with the regular
polytopes, Euclide and Archimedes. In his treatise “On Spheres and Cylinders”, Archimedes
defines a “convex arc as a plane curve which lies on one side of the line joining its endpoints
and all chords of which lies on the same side of it.”

From the XVIIth and the XVIIIth centuries, we can distinguish two main paths on con-
vexity. One is linked with Descartes, Leibnitz and Euler and the theory of polyhedra. And
the other one is linked with the theory of functions and the variational calculus. We shall
first consider the problem of convex bodies.

In 1750 and 1751, Leonard Euler made a definitive contribution on the theory of polyhe-
dra, because of the generalizations that occurred and the evolution of ideas in combinatorial
topology. His theorem, even if it was stated incorrectly:

“In every solid enclosed by plane faces, the number of faces along with the number of
solid angles exceeds the number of edges by two”, has the form: F − E + V = 2, where
F, E, and V denote the number of faces, edges, and vertices of a polyhedron. It was an
early example of the problem of a convex body, although, implicitly stated. Euler’s formula
was known to Descartes around 1630. But this formula provoked many investigations with
Legendre, Cauchy, l’Huilier, Gergonne, von Staudt, Steiner, Schläfli, Poinsot, Hessel, Möbius,
Listing, Jordan, Poincaré and H. Hopf, P. Alexandrov, etc. The word “simplex” was probably
introduced in the mathematical vocabulary by Poincaré. Steinitz (1916) defined a simplex as
a bounded convex portion of the Euclidian space determined by (n+1) linearly independent
points. Even if all these prestigious mathematicians did not contribute directly to the field of
optimization or LP problems, they had an indirect influence on the study of convex bodies,
and the principle of duality, so important in LP. Even more, Albert W. Tucker, the Princeton
mathematician, (1905–1995) began his career as a topologist.

Linked to the development of the set theory, convex sets were properly defined by
Minkowski and Brunn. David Hilbert who was very close to Minkowski, wrote these fol-
lowing sentences:

Ein konvexer (nirgends konkaver) Körper ist nach Minkowski als ein solcher
Kôrper definiert, der die Eigenschaft hat, dass, wenn man zwei seiner punkte
ins Auge fasst, auch die ganze geraldlinige Strecke zwischen denselben zu dem
Körper gehört.

Minkowski and after the Gottingen group, made some definitive contributions to the field
of convex bodies, their direct sums, intersections of convex sets, convex hulls, etc., where
Caratheodory theorem, in 1911 and Eduard Helly theorem, in 1923 which would later have
some important applications in LP. Minkowski’s book “Geometrie der Zahlen” was published
in 1896, and reedited in 1910. And his 1911 “Theorie der konvexen Körper” was an important
contribution to the theory of convex cones. We see the emergence of a link between systems
of linear inequalities and convex sets or projective geometry. Several proofs were based on
1913–1915 Steinitz’s ideas. Convexity appeared a mature mathematical subject in other
books such as the one from Bonnesen and Fenchel’s 1934 “Theorie der konvexen Körper”,
W. Fenchel got his first academic position in Göttingen. He later had to escape from the Nazis
and went to Copenhagen. In 1951, he lectured on convex sets, and functions at Princeton
University, at the time where the Princeton group was leading in linear programming.

Also, at the end of the XIXth century, convex functions resurfaced in the mathematical
aura. An example of this, were the properties of the Euler Gamma function. Some desired
fundamental geometrical properties of functions were found in the notion of convexity. In the
search for sufficient conditions to a maximum or a minimum, we are conducted to a class of
concave or convex functions and a class of convex sets. Independently O. Hölder, in 1889 in
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Göttingen and Jensen, in 1906, in Copenhagen gave formal definitions for convex functions.
For them, a real, finite and continuous function f(x) of a real variable x, is a convex function
in a given interval if the following inequality is true:

f(x) + f(y)
2

≥ f

(
x + y

2

)

Hölder (1859–1937) used directly a more general definition for convexity:

a1ϕ(x1) + a2ϕ(x2) + . . . + anϕ(xn)
a1 + a2 + . . . + an

> ϕ

(
a1x1 + a2x2 + . . . + anxn

a1 + a2 + . . . + an

)

The above inequality expressed the relation that a function value at the weighted average
of the xj is not greater than the weighted average of the function values at the xj . Indeed,
mathematical programming was directly concerned with the existence and uniqueness of
solutions. And clearly, convex problems on convex sets did guarantee global extrema. A
local minimum is also the global minimum. If we take the example of Beckenbach’s article,
in 1948, convexity was linked to the second derivative of a function, and f(x) is concave if
and only if −f(x) is convex. At least two important books, one by W. Fenchel in 1953, and
the other one, by H. G. Eggleston in 1958 introduced the differential conditions for convexity.
They also provided historical notes and an extensive list of references on convexity.

5 Duality
One of the most simple and elegant principle in Mathematics is the principle of duality.
It arose from its applications in geometry, and it applies to classes of problems. In op-
timization theory, the dual of “minimization” is “ maximization”. Here, duality means
reciprocity. Steinitz (1916) suggested the word correlation. This duality was probably, at
least implicitly, known in Fermat’s times for the problem of maximis and minimis of an un-
constrained function. It sufficed to change the sign of the function. But, from all-important
XIXth century contributors to the concept of duality, we retained two names. Joseph Diaz
Gergonne (1771–1859) because he discovered the fundamental meaning of duality and Von
Staudt (1798–1867) with his Geometrie der Lage, 1847, because of the strong impact it had
in Germany. For Gergonne, the principle of duality was sketched by Euler:

Except for some theorems, such as for instance Euler’s, in the statement of which
the number of faces and the number of vertices enter in the same way, there is no
theorem of this kind which should not inevitably correspond to another, which
can be deduced from it by merely exchanging the words faces and vertices with
one another.

For Gergonne, the duality in Geometry indicates a double aspect in a proposition: faces
and vertices in a polyhedron, or if on a given straight line, we can conceive an infinity of
points, we return the proposition, on a given point, we can conceive an infinity of straight
lines. If from two points, we can draw a straight line, the intersection of two straight lines is
a point. If, one of the most famous examples of duality in geometry came from Desargues’
theorem, Kepler, in 1619, talked about the “sexual” properties of platonic solids. The appli-
cation of duality, this metathesis to LP problems will be more complex. Because duality was
a hot topic in topology, duality was certainly familiar to topologists such as A. W. Tucker.
Here, the duality applies to the problem of minimization (maximization) with the inequalities
constraints. The key to duality will come from the old lagrangian technique in transforming
a constrained problem into an unconstrained problem, and from the calculus of variations.
In variational problems, duality relations are based on the Legendre transform.
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Duality in LP will be introduced by von Neumann, Gale, Kuhn and Tucker, with full credit
to John von Neumann. John von Neumann recognized the min-max problem. The beauty
came from the bilinear symmetry between the variables and the lagrangian multipliers. And
Kuhn (1976) said with humour “this duality, although it was discovered and explored with
surprise and delight in the early days of linear programming, has ancient and honourable
ancestors in pure and applied mathematics”.

Indeed, the recent history of linear programming and its links with Operational Research,
are well known (Dantzig 1963, Kuhn 1976, Fenchel 1983, Kjeldsen 1999). In particular, G.
Dantzig, the leading person on Linear Programming (LP) in the USA published several
testimonies. Duality was implicit in the 1873 Gordan’s article. His article was rediscovered
several times, and we wanted to quote these selected following reflections from Dines, in 1936,
who came also very close to the discovery of duality:

The theorems which we have just obtained may perhaps be described in a general
way as matrix free theorems concerning adjoint systems of linear conditions. Two
adjoint systems (from the transpose matrix) arose from the same matrix. The
properties of the matrix determine the nature of the solution of each system. But
once the characterization has been established, the matrix may be eliminated
from consideration, and there results a relationship between the natures of the
solutions of the adjoint systems.

However, duality in LP is more complex than just taking the adjoint of a matrix; it is
obtained in a finite number of steps: transpose the coefficients of the matrix, interchanging
the role of the constant terms and the coefficients of the objective function, changing the di-
rection of inequality, and maximizing instead of minimizing, with anti-symmetry processes.
Moreover, duality helped the understanding of LP problems. It brought the attention on
the existence and uniqueness of solutions, on one hand the algebraic problem, and for ex-
ample, the following table shows the correspondence between the solutions (or the absence
of solution) of primal and dual problems; and on the other hand the problem of algebraic
geometry with feasibility regions and Steinitz convex cones. The beauty of the geometrical
representations of systems of inequalities, convex cones and their duals will appear in David
Gale’s book The Theory of Linear Economic Systems (1960).

Table 1 – Correspondence of solutions between the primal and the dual problem (from
Papadimitriou and Steiglitz, 1982)

At this step, important acquisitions came, not from the problem of duality, but from its
applications of linear algebra with systems of inequalities, and indeed also from the modeling,
from the fact that a simple linear model associated to a system of linear inequalities could
have so many important applications in so many different fields such as military, economy,
and industrial applications.
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6 The art of computation

We saw that mathematicians found their aspirations in the calculus of variations, geometrical
inequalities and algebraic geometry, linear algebra, the theory of games, duality in topology,
network theory and the practical applications. The success of LP had a direct and encourag-
ing influence on non-linear programming, with for example the Kuhn Tucker conditions, in
1951. Also, The linear hypothesis has always attracted Statisticians. Linear models became
increasingly important as we considered more and more complicated experimental designs,
because the linear links between variables corresponded to a principle of uncertainty. We
also can find a similar cognition in LP. In both cases, we also have to solve systems of linear
equations, and LP made an extensive use of the gaussian elimination algorithm, developed
by Gauss in 1823–1826 for the least squares problem. The term “robust” was suggested by a
statistician, G. E. P. Box in 1953, with the meaning being insensitive to small departures from
the idealized assumptions (sensitivity to data). For example, we found a similar approach
to the addition or deletion of variables in multiple-linear regression and LP. In parallel, the
digital computer has provoked the birth of computer arithmetic and the art of scientific pro-
gramming. Again, key articles came in 1947 from J. von Neumann and H. H. Goldstine, and
from A. Turing. G. Dantzig’s algorithm, the simplex method dated from 1951. The simplex
method follows a sequence of vertices. It is a combinatorial approach. With no convergence
criteria, it produces the answer in a finite time, but the number of steps (unlike the gaussian
elimination) is not completely fixed, because we cannot tell in advance how many vertices
the method will try. It does not possess the property of polynomial complexity.
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