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Des équations polaires à la trisection des angles

Des équations polaires

à la trisection des angles

Les équations polaires des courbes sont souvent plus

simples que leurs équations cartésiennes et sont plus à

même de donner à voir leurs propriétés géométriques.

Une belle illustration est fournie par les courbes qui ont

été utilisées pour tenter de résoudre le problème de la

trisection des angles, en particulier les deux trisectrices

de Nicomède et de Mac Laurin.

André-Jean Glière

.................... SQUARE ....................

Introduction

Dans l’enseignement secondaire, les droites, les

cercles, les paraboles ou les hyperboles sont ca-

ractérisés par leurs équations cartésiennes. Les

équations polaires ne sont introduites que dans

le premier cycle universitaire ou en classes pré-

paratoires. Or, pour de nombreuses courbes, les

équations polaires sont plus simples que les équa-

tions cartésiennes et de surcroît, sont l’occasion

d’interprétations géométriques plus aisées.

D’autre part, lorsque l’on s’intéresse à l’étude des

courbes planes, on constate que les droites et

les cercles sont des courbes incontournables, non

seulement parce qu’elles participent à la construc-

tion de tant d’autres, qu’elles sont la matière pre-

mière des trois problèmes de trisection des angles,

de duplication du cube et de quadrature du cercle

que les Grecs n’arrivaient pas à résoudre à la règle

et au compas, mais aussi parce qu’elles ont la pro-

priété remarquable d’être inverses l’une de l’autre.

Dans cet article, nous voulons précisément abor-

der un de ces problèmes à partir des équations

polaires. Nous considérerons tout d’abord la droite

et le cercle sous forme polaire comme deux courbes

inverses l’une de l’autre. Puis, nous passerons très

naturellement aux conchoïdes de droites que nous

présenterons dans toute leur généralité et aux

conchoïdes de cercles dont nous exposerons le cas

particulier des limaçons de Pascal.

Enfin, et ce sera l’aboutissement et le point d’orgue

de notre travail, nous terminerons par le célèbre

problème de la trisection des angles « résolu » à

la fois par l’astronome grec Nicomède il y a plus

de 2200 ans et par le mathématicien écossais

Maclaurin au XVIIIe siècle.

La droite et le cercle, courbes

inverses l’une de l’autre

Équation polaire d’une droite non radiale

La droite D ne passe pas par le point O. Elle est

dite non radiale.

D

M

H

θ
α

a

O

Figure 1.

Si les coordonnées polaires du pointM de la droiteD

sont (ρ,θ), alors OH = 𝑎 = ρcos(θ− α).

L’équation polaire de la droite D est :

ρ = 𝑎
cos(θ − α) ·
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Des équations polaires à la trisection des angles

Quitte à changer d’axes, on peut considérer la droite

D non radiale orthogonale à l’axe des abscisses,

autrement dit considérer que l’angle α est nul.

D

M

H
θ

aO

Figure 2.

Par conséquent, l’équation polaire d’une droite

non radiale est : ρ = 𝑎
cos(θ) où 𝑎 est la distance

OH du point O à la droite D .

Équation polaire d’un cercle

O

Ω

M

R

ρ

ρ0

θ
θ0

Figure 3.

Le cercle C de centre Ω et de rayon 𝑅 a pour

équation cartésienne :

(𝑥 − ρ0 cos(θ0))2 + (𝑦 − ρ0 sin(θ0))2 = 𝑅2.

Autrement dit :

ρ2 + ρ2
0 − 2ρρ0 cos(θ − θ0) = 𝑅2.

Quitte à changer d’origine ou d’axes, on peut suc-

cessivement considérer que le cercle passe par

le point O et que son centre Ω se trouve sur l’axe

des abscisses.

Par conséquent, son équation polaire devient :

ρ = 2𝑅 cos(θ − θ0) (figure 4)

puis ρ = 2𝑅 cos(θ) (figure 5).

O

Ω

M

R
ρ

θ
θ0

Figure 4.

O Ω A

M

R
ρ

θ

Figure 5.

L’équation polaire d’un cercle de diamètre 𝑎
passant par l’origine (ou le pôle) O est donc :

ρ = 𝑎 cos(θ).

Deux courbes inverses l’une de l’autre

Ainsi que nous pouvons le remarquer, les équa-

tions polaires d’une droite non radiale et d’un

cercle passant par le pôle sont, à un coefficient

multiplicatif près, inverses l’une de l’autre. De fa-

çon plus précise, si l’équation polaire d’une droite

est ρ = 𝑎
cos(θ) , où 𝑎 est la distance de la droite au

pôle, et celle d’un cercle ρ′ = 𝑎′ cos(θ), où 𝑎′ est le

diamètre du cercle, alors le produit ρ × ρ′ = 𝑎 × 𝑎′

est constant. Cette propriété remarquable s’inter-

prète géométriquement. Pour cela nous devons

faire appel à la notion d’inversion.

Deux points M et M′ sont inverses l’un de l’autre

par l’inversion 𝑖 de pôle O et de rapport 𝑘 (que

l’on supposera ici positif) si et seulement s’ils sont

alignés avec O et OM × OM′ = 𝑘. L’ensemble des

points invariants de 𝑖 est le cercle C de centre O

et de rayon √𝑘, appelé cercle d’inversion de 𝑖. Une
construction élémentaire de l’inverse d’un point

à partir du cercle d’inversion de rayon 𝑅 = √𝑘 est

donnée par la figure 6.

O MM′

T

C

R

Figure 6.
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Des équations polaires à la trisection des angles

Par l’inversion 𝑖 de pôleO et de rapport 𝑘, l’image de
la droite ne passant pas par le pôle O et d’équation

polaire ρ = 𝑎
cos(θ) est le cercle passant par le

pôle et d’équation polaire ρ′ = 𝑎′ cos(θ). Les deux
constantes 𝑎 et 𝑎′ sont inversement proportionnelles

puisque leur produit vaut 𝑘.

Dans la figure ci-dessous où le cercle d’inversion C

de centre O est dessiné en rouge, on constate ainsi

que les diamètres 𝑎′ des cercles croissent au fur

et à mesure que les droites se rapprochent de O,

autrement dit à mesure que leurs distances 𝑎 au

point O diminuent. À la limite, la droite passe par

O, 𝑎 = 0. Elle est alors globalement invariante car

son image est un cercle de diamètre 𝑎′ infini !

O

C

Figure 7.

Puisque l’inversion transforme un point à l’intérieur

du cercle d’inversion en un point à l’extérieur et vice

versa, remarquons que le segment noir à l’intérieur

(en pointillés) a pour image l’arc de cercle noir en

pointillés à l’extérieur et les deux demi-droites exté-

rieures noires ont pour image l’arc de cercle noir à

l’intérieur du cercle d’inversion.

Un petit exercice laissé au lecteur consiste à mon-

trer que l’inversion d’écriture complexe 𝑓 : 𝑧 ⟼ 1
𝑧

transforme le cercle C de centre A d’affixe i et de
rayon 1 en la médiatrice de [OA].

Conchoïdes de droites et cercles

Le mot conchoïde 1 vient du grec kogkhoeidês (kog-

khê : coquille ; eidos : forme) qui signifie « en forme

de coquille ». De manière générale, une conchoïde est

une courbe obtenue à partir d’un point fixe O, appelé

pôle, d’une autre courbe C et d’une distance 𝑏. Elle
s’obtient en reportant sur chaque droite D qui passe

par O et qui coupe la courbe C en M les points P et

Q de la droite D situés à la distance 𝑏 de M.

La figure ci-dessous montre la conchoïde dessinée

en rouge de l’ellipse E tracée en bleu de pôle O

et de module 𝑏 = PM = MQ. Lorsque M décrit E ,

les deux points P et Q situés à la distance 𝑏 de M

sur la demi-droite d’origine O et passant par M

décrivent les deux boucles de la conchoïde.

O

M

P

Q

E

Figure 8.

Les conchoïdes de droites

La première conchoïde connue est celle du mathé-

maticien et astronome grec Nicomède. Contem-

porain d’Ératosthène, il aurait vécu entre 280 et

210 avant J.-C. Il l’aurait étudiée en cherchant à

résoudre le fameux problème de la trisection des

angles, dont nous reparlerons en fin d’article.

La conchoïde de la droiteD par rapport au pointO

et de module 𝑏 s’obtient en reportant sur chaque

rayon vecteur (OM), où M décrit la droite D , de

part et d’autre de ce point, deux points P et Q tels

que QM = PM = 𝑏.

Si la droite D a pour équation polaire ρ =
𝑎

cos(θ) par rapport au pôleO, alors la conchoïde
de Nicomède a naturellement pour équation po-

laire :

ρ = 𝑎
cos(θ) ± 𝑏.

Nous remarquons non seulement que l’équation po-

laire est beaucoup plus simple que l’équation carté-

sienne : 𝑦2(𝑥 − 𝑎)2 = 𝑥2(𝑏 + 𝑎 − 𝑥)(𝑏 − 𝑎 + 𝑥),
mais également que son expression rend intelli-

gible la construction géométrique de la conchoïde

de Nicomède.

1. Référence : Académie française Youtube.
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Des équations polaires à la trisection des angles

Dans la figure ci-dessous, nous avons représenté

deux conchoïdes de la droite dessinée en bleu,

l’une en rouge pour un module 𝑏 plus petit que la

distance du point O à la droite : 𝑏 < 𝑎, l’autre en
vert pour un module 𝑏 plus grand que la distance

du point O à la droite : 𝑏 > 𝑎.

O

M
P

P′

Q

Q′

D

Figure 9.

Dans la figure ci-dessous (figure 10), on a repré-

senté la conchoïde dans le cas particulier où 𝑎 = 𝑏,
donc d’équation polaire : ρ = 𝑎

cos(θ) ± 𝑎.

Figure 10.

Ainsi que le montrent les trois figures ci-après (11,

12 et 13), pour des valeurs petites de 𝑏, les deux
branches de la conchoïde de Nicomède s’écartent

assez peu de la droite et ont pour équation polaire :

ρ ≅ 𝑎
cos(θ) , tandis que, pour des valeurs impor-

tantes de 𝑏, les deux branches de la conchoïde

de Nicomède prennent la forme de deux demi-

cercles centrés sur le pôle O et de rayon 𝑏 et ont

pour équation polaire : ρ ≅ 𝑏.

b

a
= 0,25

b

a
= 0,5

Figure 11.
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Figure 12.
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Figure 13.
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Des équations polaires à la trisection des angles

Des conchoïdes de cercles particulières :

les limaçons de Pascal

Une conchoïde d’un cercle par rapport à l’un

de ses points est appelée un limaçon de Pascal.

C’est apparemment Gilles Personne de Roberval

(1602–1675) qui lui a donné ce nom en l’honneur

de son ami Étienne Pascal (1588–1651). Le père

du célèbre mathématicien et philosophe Blaise

Pascal (1623–1662) l’a proposée en 1630 comme

sujet d’étude au père Mersenne (1588–1648).

La conchoïde du cercle C par rapport à un de ses

points, ici le point O, et de module 𝑏 est dessinée

en rouge sur la figure ci-dessous. Elle s’obtient

en reportant sur chaque rayon vecteur (OM), où
M décrit le cercle C de diamètre 𝑎 tracé en bleu,

de part et d’autre de ce point, deux points P et Q

tels que QM = PM = 𝑏.

O

M

P

Q

a

bC

Figure 14.

Si le cercle C a pour équation polaire

ρ = 𝑎 cos(θ)
par rapport au pôle O, alors le limaçon de

Pascal a naturellement pour équation polaire

ρ = 𝑎 cos(θ) ± 𝑏. En fait, l’équation peut s’écrire
plus simplement :

ρ = 𝑎 cos(θ) + 𝑏.

Là encore, nous remarquons non seulement

que l’équation polaire est bien plus simple que

l’équation cartésienne :

(𝑥2 + 𝑦2 − 𝑎𝑥)2 = 𝑏2(𝑥2 + 𝑦2),

mais aussi que son expression rend intelligible la

construction géométrique d’un limaçon de Pascal.
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Figure 15.

Ainsi que le montre la figure 15, suivant les va-

leurs du rapport
𝑏
𝑎 , la forme du limaçon de Pascal

change. La courbe faisant frontière entre les lima-

çons avec une boucle et ceux sans boucle est des-

sinée en rouge. Elle a la forme d’un cœur et, pour

cette raison, s’appelle une cardioïde. Ses deux pa-

ramètres 𝑎 et 𝑏 sont égaux et son équation polaire

est ρ = 𝑎 cos(θ) + 𝑎.

Les deux figures suivantes présentent les cas ex-

trêmes d’une conchoïde du cercle bleu. Comme le

montre la figure 16, pour des valeurs grandes de
𝑏
𝑎 ,

ici 5, le limaçon de Pascal qui a pour équation po-

laire : ρ ≅ 𝑏, ressemble à un cercle (tracé en rouge).

Figure 16. Le limaçon de Pascal pour
𝑏
𝑎 = 5.
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Des équations polaires à la trisection des angles

La figure 17 montre un limaçon de Pascal à une

boucle (en rouge) pour une valeur petite de
𝑏
𝑎 , ici

1
20· Son équation polaire est : ρ ≅ 𝑎 cos(θ). Les
deux parties de la courbe se confondent avec le

cercle bleu de la conchoïde.

Figure 17. Le limaçon de Pascal pour
𝑏
𝑎 = 1

20 ·

Les trisectrices

La trisectrice de Nicomède

Les conchoïdes de Nicomède sont des trisectrices.

Elles permettent a priori de construire à la règle

et au compas le tiers d’un angle donné. À chaque

angle à trisecter correspond une conchoïde que

l’on peut effectivement construire point par point

à la règle et au compas.

Cependant, on devra lisser la courbe pour obtenir

un tracé continu et surtout pour déterminer le

point N, nécessaire à la construction de l’angle δ,

tiers de l’angle α (voir figure 18). Le point N est

donc un point approché.

Laméthode est la suivante. On construit un triangle

OHI rectangle en H, tel que ÔIH = α soit l’angle à

trisecter. On construit ensuite la conchoïde de la

droite (IH) de pôle O et de module OI. Le cercle

de centre I et de rayon OI coupe une branche de

la conchoïde en M symétrique de O par rapport à

I, et la seconde branche en un autre point N dont

la construction ne peut être qu’approchée. L’angle

trisecté est N̂JI, où J est le point d’intersection de

(ON) et de (IH). On remarque que le moduleOI vaut

aussi IM, NI ou NJ.

H

I

J

M

N

O

α

β

δ

δ

Figure 18.

La démonstration est aisée. Le triangle OIN étant

isocèle, les deux angles ÔNI et N̂OI sont égaux à β.

De plus les deux angles α et β + δ sont alternes

internes, donc α = β+ δ. D’autre part, l’angle ins-

crit N̂OM est égal à la moitié de l’angle au centre

N̂IM. Enfin, comme le triangle NIJ est isocèle, les

angles égaux N̂IJ et N̂JI valent δ (angles alternes

internes). Par conséquent α+ δ = 2β. On tire faci-

lement des deux égalités :
⎧{
⎨{⎩

α = β + δ

α + δ = 2β
la

valeur de l’angleα en fonction de l’angle δ :α = 3δ.
L’angle trisecté de ÔIH est donc bien l’angle N̂JI.

La trisectrice de Maclaurin

Une autre trisectrice célèbre est celle du mathé-

maticien écossais Colin Maclaurin (1698-1746),

auteur d’un livre de géométrie Geometria orga-

nica dans lequel il présente la théorie des po-

daires, d’une théorie des marées et en 1742 d’un

volumineux Treatise of fluxions dans lequel il

défend la théorie newtonienne.
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Des équations polaires à la trisection des angles

Soit un cercle de rayon 4𝑎 et de centre A passant

par l’origine O. Soit une droite passant par un

point C situé à une distance 2𝑎 de O et parallèle à

la tangente au cercle en O, ainsi qu’on peut le lire

sur la figure 19. Une droite passant par O coupe

le cercle en P et la droite en R. Lorsque la droite

pivote autour de O, le milieuM de [PR] décrit une
courbe appelée trisectrice de Maclaurin.

AC

M

O

P

R

C

−4

−2

0

2

4

6

−2 2 4 6 8

Figure 19.

Le cercle a pour équation polaire ρ=8𝑎 cos(θ) ;
la droite a pour équation polaire ρ= 2𝑎

cos(θ+ π) ;
la trisectrice deMaclaurin a donc pour équation

polaire :

ρ = 4𝑎 cos(θ) − 𝑎
cos(θ) ·

Avant de montrer que la courbe de Maclaurin

permet la trisection d’un angle, étudions le pro-

blème inverse et observons qu’il est très facile

de construire à la règle et au compas le triple

d’un angle donné. En effet, si l’angle à tripler est

l’angle B̂OP, on constate sans problème que la

solution est l’angle Q̂BM (figure 20).

O
B

M

P

Q

Figure 20.

Si maintenant on veut retrouver l’angle B̂OP noté θ

lorsque l’on connaît l’angle à trisecter Q̂BM = 3θ, il
faut pouvoir caractériser le point M. Montrons que

ce pointM appartient précisément à une trisectrice

de Maclaurin. Dans le triangle BOM de la figure

précédente, appliquons la règle des sinus :

OM
sin(π − 3θ) = OB

sin(2θ) ⟺ OM = OB × sin(3θ)
sin(2θ) ·

Or sin(3θ) = 3 sin(θ) − 4 sin3(θ), donc :

OM = OB × 3 sin(θ) − 4 sin3(θ)
sin(2θ)

= OB × 3 − 4(1 − cos2(θ))
2 cos(θ) ·

En posant OB = 2𝑎, il vient :

OM = 4𝑎 (cos(θ) − 1
4 cos(θ)) ·

Le point M appartient donc à la trisectrice de

Maclaurin définie plus haut.

La construction du trisecté d’un angle en découle.

AC

M

O
P S

B

Figure 21.

On construit la trisectrice de Maclaurin de para-

mètres OA = 4𝑎 et OC = 2𝑎. On place le point

B symétrique du point C par rapport à O. Ainsi

OB = 2𝑎. Le point S vérifie OS = 3𝑎. On place

l’angle à trisecter avec un sommet en B et un côté

sur la demi-droite [BA). L’autre côté de l’angle

coupe la trisectrice en un point M.
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Des équations polaires à la trisection des angles

Le trisecté est alors l’angle B̂OM.

Pour s’en convaincre, on dessine les deux triangles

isocèles PBM et OBP. D’après la démonstration pré-

cédente qui peut se lire dans les deux sens, on

en déduit alors que le trisecté de l’angle ŜBM est

l’angle B̂OP.

Comme la conchoïde de Nicomède, la trisectrice

de Maclaurin est construite à la règle et au com-

pas, mais elle ne permet pas non plus une trisection

des angles rigoureuse. Elle doit être en effet lissée

pour obtenir le point approximatif M, nécessaire à

la construction du tiers de l’angle donné.

Conclusion

Comme on l’a vu, l’inversion, couplée aux équa-

tions polaires, joue un rôle fondamental dans

la mise en relation des courbes entre elles. Il

est ainsi élémentaire de démontrer que l’inverse

d’une parabole par rapport à son foyer est une

cardioïde, et de manière générale que celle de

coniques par rapport à leurs foyers sont des lima-

çons de Pascal. L’hyperbole équilatère n’échappe

pas à cette propriété, mais si on l’inverse par

rapport à son centre, elle a pour image une

lemniscate (en rouge dans la figure ci-contre).

O FF′ SS′

E

E′−3 −2 −1 0 1 2 3

−3

−2

−1

1

2

3

H

C

Figure 22.

Il est quand même dommage de se priver de

si merveilleux outils dans l’enseignement secon-

daire. Pour l’heure, les lycéens devront se conten-

ter du fabuleux site MathCurve Youtube qui recense un

nombre incalculable de courbes en 2D, toutes

données avec leurs équations polaires !

............ SQUARE ............

Ancien professeur en classes préparatoires,

André-Jean Glière est titulaire d’une thèse
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