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Des equations polaires

a la trisection des angles

Les équations polaires des courbes sont souvent plus
simples que leurs équations cartésiennes et sont plus a
méme de donner a voir leurs propriétés géométriques.
Une belle illustration est fournie par les courbes qui ont
été utilisées pour tenter de résoudre le probleme de la
trisection des angles, en particulier les deux trisectrices
de Nicoméde et de Mac Laurin.

André-Jean Gliere

Introduction

Dans I’enseignement secondaire, les droites, les
cercles, les paraboles ou les hyperboles sont ca-
ractérisés par leurs équations cartésiennes. Les
équations polaires ne sont introduites que dans
le premier cycle universitaire ou en classes preé-
paratoires. Or, pour de nombreuses courbes, les
équations polaires sont plus simples que les équa-
tions cartésiennes et de surcroit, sont I’occasion
d’interprétations géométriques plus aisées.

D’autre part, lorsque I’on s’intéresse a 1’étude des
courbes planes, on constate que les droites et
les cercles sont des courbes incontournables, non
seulement parce qu’elles participent a la construc-
tion de tant d’autres, qu’elles sont la matiére pre-
miére des trois problémes de trisection des angles,
de duplication du cube et de quadrature du cercle
que les Grecs n’arrivaient pas a résoudre a la regle
et au compas, mais aussi parce qu’elles ont la pro-
priété remarquable d’étre inverses 1’'une de ’autre.

Dans cet article, nous voulons précisément abor-
der un de ces problemes a partir des équations
polaires. Nous considérerons tout d’abord la droite
et le cercle sous forme polaire comme deux courbes
inverses l'une de 'autre. Puis, nous passerons tres
naturellement aux conchoides de droites que nous
présenterons dans toute leur généralité et aux
conchoides de cercles dont nous exposerons le cas
particulier des limacons de Pascal.

Enfin, et ce sera l’aboutissement et le point d’orgue
de notre travail, nous terminerons par le célebre
probleme de la trisection des angles « résolu » a
la fois par l’astronome grec Nicomede il y a plus
de 2200 ans et par le mathématicien écossais
Maclaurin au xviie siecle.

La droite et le cercle, courbes
inverses I'une de I’autre

Equation polaire d’une droite non radiale

La droite 2 ne passe pas par le point O. Elle est
dite non radiale.

<
M
H
a
0
x
O
Figure 1.

Siles coordonnées polaires du point M de la droite 2
sont (p, 0), alors OH = a = pcos(0 — «).

Léquation polaire de la droite Z est :

a

p= cos(® — )



Des équations polaires a la trisection des angles

Quitte a changer d’axes, on peut considérer la droite
2 non radiale orthogonale a 1’axe des abscisses,
autrement dit considérer que l'angle « est nul.

9
.M
0
H
9) a
Figure 2.

Par conséquent, I’équation polaire d’une droite

non radiale est: p = ou a est la distance

a
cos(0)
OH du point O a la droite 2.

Equation polaire d’un csrcle

R

Q

Po

Figure 3.
Le cercle ¥ de centre Q et de rayon R a pour
équation cartésienne :
(X —pp cos(8¢))? + (V — pg sin(0y))? = R2.
Autrement dit :

p2 + p% —2ppgcos(0@—0g) = R2,

Quitte a changer d’origine ou d’axes, on peut suc-
cessivement considérer que le cercle passe par
le point O et que son centre Q se trouve sur 'axe
des abscisses.

Par conséquent, son équation polaire devient :

p =2Rcos(0 —0¢) (figure[d)
puis p = 2R cos(0) (figure [5).

M M
p 7 p f
0
) Q 0 Q A
0
0
Figure 4. Figure 5.

Léquation polaire d'un cercle de diameétre a
passant par l’origine (ou le pole) O est donc :

p = acos(0).

Deux courbes inverses I'une de |'autre

Ainsi que nous pouvons le remarquer, les équa-
tions polaires d’une droite non radiale et d’'un
cercle passant par le pdle sont, a un coefficient
multiplicatif pres, inverses 1'une de 1’autre. De fa-
con plus précise, sil’équation polaire d'une droite

est p = ou a est la distance de la droite au

_a
cos(0)’
pole, et celle d'un cercle p’ = a’ cos(0), ou a’ estle
diametre du cercle, alors le produit px p’ = a x a’
est constant. Cette propriété remarquable s’inter-
prete géométriquement. Pour cela nous devons

faire appel a la notion d’inversion.

Deux points M et M’ sont inverses 1'un de 'autre
par l'inversion i de pdle O et de rapport k (que
I’on supposera ici positif) si et seulement s’ils sont
alignés avec O et OM x OM’ = k. Llensemble des
points invariants de i est le cercle ¥ de centre O
et de rayon Vk, appelé cercle d’inversion de i. Une
construction élémentaire de l'inverse d’un point
a partir du cercle d’inversion de rayon R = Vk est
donnée par la figure [6]

Figure 6.
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Par l'inversion i de pole O et de rapport k, 'image de
la droite ne passant pas par le pole O et d’équation

polaire p = est le cercle passant par le

_a
cos(0)
pole et d’équation polaire p’ = a’ cos(0). Les deux
constantes a et a’ sont inversement proportionnelles

puisque leur produit vaut k.

Dans la figure ci-dessous ou le cercle d’inversion %
de centre O est dessiné en rouge, on constate ainsi
que les diametres a’ des cercles croissent au fur
et a mesure que les droites se rapprochent de O,
autrement dit a mesure que leurs distances a au
point O diminuent. A la limite, la droite passe par
O, a = 0. Elle est alors globalement invariante car
son image est un cercle de diameétre a’ infini!

Figure 7.

Puisque l'inversion transforme un point a l'intérieur
du cercle d’inversion en un point a 1’extérieur et vice
versa, remarquons que le segment noir a l'intérieur
(en pointillés) a pour image 1’arc de cercle noir en
pointillés a I'extérieur et les deux demi-droites exté-
rieures noires ont pour image I'arc de cercle noir a
I'intérieur du cercle d’inversion.

Un petit exercice laissé au lecteur consiste a mon-
trer que l'inversion d’écriture complexe f : z — =
transforme le cercle % de centre A d’affixe i et de
rayon 1 en la médiatrice de [OA].

Conchoides de droites et cercles

Le mot concho'l'deEl vient du grec kogkhoeidés (kog-
khé : coquille; eidos : forme) qui signifie « en forme
de coquille ». De maniere générale, une conchoide est
une courbe obtenue a partir d'un point fixe O, appelé

1. Référence : Académie francaise 3.

Des équations polaires a la trisection des angles

pole, d'une autre courbe % et d'une distance b. Elle
s’obtient en reportant sur chaque droite & qui passe
par O et qui coupe la courbe % en M les points P et
Q de la droite Z situés a la distance b de M.

La figure ci-dessous montre la conchoide dessinée
en rouge de l'ellipse & tracée en bleu de pole O
et de module b = PM = MQ. Lorsque M décrit &,
les deux points P et Q situés a la distance b de M
sur la demi-droite d’origine O et passant par M
décrivent les deux boucles de la conchoide.

C PO

Q

Figure 8.

Les conchoides de droites

La premiere conchoide connue est celle du mathé-
maticien et astronome grec Nicomede. Contem-
porain d’Eratosthéne, il aurait vécu entre 280 et
210 avant J.-C. Il I’aurait étudiée en cherchant a
résoudre le fameux probleme de la trisection des
angles, dont nous reparlerons en fin d’article.

La conchoide de la droite & par rapport au point O
et de module b s’obtient en reportant sur chaque
rayon vecteur (OM), ou M décrit la droite 2, de
part et d’autre de ce point, deux points P et Q tels
que QM = PM = b.

Si la droite 2 a pour équation polaire p =
a R .
ST par rapport au pole O, alors la conchoide
de Nicomede a naturellement pour équation po-

laire :

a
P= cos(0) *b.

Nous remarquons non seulement que I’équation po-
laire est beaucoup plus simple que I'équation carté-
sienne : y2(x —a)2 = x2(b+a—-x)(b—a+ x),
mais également que son expression rend intelli-
gible la construction géométrique de la conchoide
de Nicomede.


https://www.dictionnaire-academie.fr/article/A9C3382

Des équations polaires a la trisection des angles

Dans la figure ci-dessous, nous avons représenté
deux conchoides de la droite dessinée en bleu,
I'une en rouge pour un module b plus petit que la
distance du point O a la droite : b < g, l’autre en
vert pour un module b plus grand que la distance
du point O a la droite : b > a.

y

P/

Q/

Figure 9.

Dans la figure ci-dessous (figure [L0), on a repré-
senté la conchoide dans le cas particulier ou a = b,

a *+a
cos(0)

J\
V

Figure 10.

donc d’équation polaire : p =

Ainsi que le montrent les trois figures ci-apres
[12] et [13), pour des valeurs petites de b, les deux
branches de la conchoide de Nicomede s’écartent
assez peu de la droite et ont pour équation polaire :

. a
P = Cos@)
tantes de b, les deux branches de la conchoide

tandis que, pour des valeurs impor-

de Nicomeéde prennent la forme de deux demi-
cercles centrés sur le pole O et de rayon b et ont
pour équation polaire : p = b.

Figure 11. Figure 12.

Figure 13.
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Des conchoides de cercles particuliéres :
les limacons de Pascal

Une conchoide d’un cercle par rapport a l'un

de ses points est appelée un limagon de Pascal.

C’est apparemment Gilles Personne de Roberval
(1602-1675) qui lui a donné ce nom en I’honneur
de son ami Etienne Pascal (1588-1651). Le pere
du célebre mathématicien et philosophe Blaise
Pascal (1623-1662) 1’a proposée en 1630 comme
sujet d’étude au pere Mersenne (1588-16438).
La conchoide du cercle ¢ par rapport a un de ses
points, ici le point O, et de module b est dessinée
en rouge sur la figure ci-dessous. Elle s’obtient
en reportant sur chaque rayon vecteur (OM), ou
M décrit le cercle ¢ de diameétre a tracé en bleu,
de part et d’autre de ce point, deux points P et Q
tels que QM = PM = b.

Figure 14.

Si le cercle % a pour équation polaire
p = acos(0)
par rapport au pole O, alors le limagon de
Pascal a naturellement pour équation polaire
p = acos(0) + b. En fait, '’équation peut s’écrire
plus simplement :
p = acos(0) + b.

La encore, nous remarquons non seulement
que I’équation polaire est bien plus simple que
I’équation cartésienne :

(x% +y2 —ax)? = b%(x% + y?),

Des équations polaires a la trisection des angles

mais aussi que son expression rend intelligible la
construction géométrique d'un limacon de Pascal.

e—

P\

Figure 15.

Ainsi que le montre la figure [I5] suivant les va-
leurs du rapport 7 la forme du limagon de Pascal
change. La courbe faisant frontiere entre les lima-
gons avec une boucle et ceux sans boucle est des-
sinée en rouge. Elle a la forme d’un ceceur et, pour
cette raison, s’appelle une cardioide. Ses deux pa-
rametres a et b sont égaux et son équation polaire
est p =acos(9) +a.

Les deux figures suivantes présentent les cas ex-
trémes d’'une conchoide du cercle bleu. Comme le
montre la figure pour des valeurs grandes de %,
ici 5, le limacon de Pascal qui a pour équation po-
laire : p = b, ressemble a un cercle (tracé en rouge).

@

Figure 16. Le limagon de Pascal pour % =5,



Des équations polaires a la trisection des angles

La figure [I7| montre un limagon de Pascal a une

boucle (en rouge) pour une valeur petite de %, ici

%- Son équation polaire est : p = acos(0). Les

deux parties de la courbe se confondent avec le
cercle bleu de la conchoide.

1

Figure 17. Le limagon de Pascal pour % =50

Les trisectrices

La trisectrice de Nicoméde

Les conchoides de Nicomede sont des trisectrices.

Elles permettent a priori de construire a la régle
et au compas le tiers d’un angle donné. A chaque
angle a trisecter correspond une conchoide que
I'on peut effectivement construire point par point
a la régle et au compas.

Cependant, on devra lisser la courbe pour obtenir
un tracé continu et surtout pour déterminer le
point N, nécessaire a la construction de 1’angle 9,
tiers de l'angle o (voir figure[18). Le point N est
donc un point approché.

La méthode est la suivante. On construit un triangle
OHl rectangle en H, tel que OIH = « soit I’angle a
trisecter. On construit ensuite la conchoide de la
droite (IH) de podle O et de module Ol. Le cercle
de centre | et de rayon Ol coupe une branche de
la conchoide en M symétrique de O par rapport a
I, et la seconde branche en un autre point N dont
la construction ne peut étre qu’approchée. Langle
trisecté est NJI, ou J est le point d’intersection de
(ON) et de (IH). On remarque que le module Ol vaut
aussi IM, NI ou NJ.

Figure 18.

La démonstration est aisée. Le triangle OIN étant
isocele, les deux angles ONI et NOI sont égaux a f3.
De plus les deux angles « et 3 + 6 sont alternes
internes, donc o = 3 + 6. D’autre part, I’angle ins-
crit NOM est égal a la moitié de I’angle au centre
NIM. Enfin, comme le triangle NIJ est isocele, les
angles égaux NIJ et NJI valent & (angles alternes
internes). Par conséquent o + 6 = 2f3. On tire faci-
x = B+
+6 = 28
valeur del’angle « en fonction de I’angle & : &« = 39.

lement des deux égalités : { la

Langle trisecté de OIH est donc bien l'angle NJI.

La trisectrice de Maclaurin

Une autre trisectrice célebre est celle du mathé-
maticien écossais Colin Maclaurin (1698-1746),
auteur d’un livre de géométrie Geometria orga-
nica dans lequel il présente la théorie des po-
daires, d’une théorie des marées et en 1742 d'un
volumineux Treatise of fluxions dans lequel il
défend la théorie newtonienne.
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Soit un cercle de rayon 4a et de centre A passant
par l'origine O. Soit une droite passant par un
point C situé a une distance 2a de O et parallele a
la tangente au cercle en O, ainsi qu’on peut le lire
sur la figure [I9] Une droite passant par O coupe
le cercle en P et la droite en R. Lorsque la droite
pivote autour de O, le milieu M de [PR] décrit une
courbe appelée trisectrice de Maclaurin.

Figure 19.

Le cercle a pour équation polaire p=8a (:205(9) g
a

cos(0 + m) ’
la trisectrice de Maclaurin a donc pour équation

la droite a pour équation polaire p=

polaire :

p =4acos(0) — %(9)-

Avant de montrer que la courbe de Maclaurin
permet la trisection d’un angle, étudions le pro-
bléme inverse et observons qu’il est tres facile
de construire a la régle et au compas le triple
d’un angle donné. En effet, si ’angle a tripler est
I’angle BOP, on constate sans probleme que la
solution est ’angle Q/B\M (ﬁgure.

B Q
Figure 20.

Des équations polaires a la trisection des angles

Si maintenant on veut retrouver l'angle BOP noté 0
lorsque l'on connait 'angle & trisecter QBM = 36, il
faut pouvoir caractériser le point M. Montrons que
ce point M appartient précisément a une trisectrice
de Maclaurin. Dans le triangle BOM de la figure
précédente, appliquons la regle des sinus :

oM OB

sin(7t — 30) - sin(20) = OM = 0B x

sin(360)
sin(20)

Or sin(30) = 3sin(0) — 4sin3(9), donc :

3sin(0) — 4 sin>(0)

OM = OB x sin(20)
_ 3—4(1 —cos?(0))
= OBx 2 cos(0)

En posant OB = 2g, il vient :

1
OM = 4aq (005(9) - m) .

Le point M appartient donc a la trisectrice de
Maclaurin définie plus haut.

La construction du trisecté d’un angle en découle.

Figure 21.

On construit la trisectrice de Maclaurin de para-
metres OA = 4a et OC = 2a. On place le point
B symétrique du point C par rapport a O. Ainsi
OB = 2a. Le point S vérifie OS = 3a. On place
I’angle a trisecter avec un sommet en B et un c6té
sur la demi-droite [BA). Lautre coté de ’angle
coupe la trisectrice en un point M.
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Le trisecté est alors I’angle BOM.

Pour s’en convaincre, on dessine les deux triangles
isoceles PBM et OBP. D’apres la démonstration pré-
cédente qui peut se lire dans les deux sens, on
en déduit alors que le trisecté de ’angle SBM est
I’'angle BOP.

Comme la conchoide de Nicomede, la trisectrice
de Maclaurin est construite a la regle et au com-
pas, mais elle ne permet pas non plus une trisection
des angles rigoureuse. Elle doit étre en effet lissée
pour obtenir le point approximatif M, nécessaire a
la construction du tiers de 1’angle donné.

Conclusion

Comme on I’a vu, I'inversion, couplée aux équa-
tions polaires, joue un réle fondamental dans
la mise en relation des courbes entre elles. Il
est ainsi élémentaire de démontrer que l'inverse
d’une parabole par rapport a son foyer est une
cardioide, et de maniere générale que celle de
coniques par rapport a leurs foyers sont des lima-
cons de Pascal. Lhyperbole équilatere n’échappe
pas a cette propriété, mais si on l'inverse par
rapport a son centre, elle a pour image une
lemniscate (en rouge dans la figure ci-contre).

Figure 22.

Il est quand méme dommage de se priver de
si merveilleux outils dans l’enseignement secon-
daire. Pour I'heure, les lycéens devront se conten-
ter du fabuleux site MathCurve @ qui recense un
nombre incalculable de courbes en 2D, toutes
données avec leurs équations polaires !

Ancien professeur en classes préparatoires,

André-Jean Gliere est titulaire d’une these

sur 1’histoire et I’épistémologie des nombres
négatifs de d’Alembert a nos jours.

gaj.math@numericable.fr

© APMEP Décembre 2023
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