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Quel sens mathématique pour les grandeurs ?

Quel sens mathématique

pour les grandeurs?
Les physiciens, les mathématiciens, les programmes,

parlent de grandeurs. Mais pour le commun des pro-

fesseurs de mathématiques, rechercher une définition

« propre » de ce concept est une épreuve redoutable.

Cet article, qui ne manque pas de subtilités, vous

apportera des éléments de réponse.

Richard Cabassut

.................... SQUARE ....................

Le mathématicien Grothendieck [1, p. 20] rappe-

lait à propos de sa scolarité : « Ce qui me satis-

faisait le moins, dans nos livres de maths, c’était

l’absence de toute définition sérieuse de la notion

de longueur (d’une courbe), d’aire (d’une surface),

de volume (d’un solide) ». Comme beaucoup d’en-

seignants des générations post-Grothendieck 1,

je n’ai pas eu d’enseignement sur les grandeurs

dans ma scolarité et au cours de mes études : j’ai

eu droit aux espaces mesurés, avec les exemples

emblématiques des cardinaux et des probabili-

tés dans le secondaire, et la théorie de la mesure

dans le supérieur. J’ai eu affaire aux équations aux

grandeurs en physique et c’est seulement quand

il m’a fallu former des professeurs d’école que

j’ai découvert les grandeurs. J’ai alors mesuré la

difficulté à trouver des définitions mathématiques

à propos des notions attachées aux grandeurs.

Le but de cet article est de proposer des définitions

mathématiques des grandeurs, des grandeurs repé-

rables et des grandeurs mesurables, inspirées par

une littérature qui n’est pas toujours consensuelle 2.

Nous proposons une réflexion sur le sens des

définitions mathématiques autour du thème

des grandeurs et mesures 3 à adapter 4 pour

l’enseignement ou la formation d’enseignants.

Rappelons le travail pionnier de l’APMEP [6, p. 12]

qui définissait en ces termes la notion de Gran-

deur : « Partons de l’exemple bien connu de la

longueur des segments 5. Dans un ensemble de

segments, la relation qui a pour lien verbal “est su-

perposable à” est une relation d’équivalence (du

moins si l’on convient qu’un segment est super-

posable avec lui-même). Les segments de même

classe sont dits de même longueur “ℓ” et l’on dit

de chacun des segments de cette classe que sa lon-

gueur est ℓ. Le lien verbal peut se dire “a même

longueur que”. Le mot longueur ne désigne ni

un ensemble de points, ni un nombre ». Les au-

teurs expriment un lien entre grandeur et classe

d’équivalence, leur exemple de départ concerne

la longueur. Nous nous proposons de mener plus

loin la réflexion de ce groupe en proposant une

définition du concept même de grandeur, dans

le cas général. Notre propos sera illustré tout au

long de ce texte par le concept de longueur.

Sens mathématique versus

sens extra-mathématique

Le domaine dit « des grandeurs » est présent

dans les programmes d’enseignement dès l’école

primaire. Ce domaine permet d’aider l’élève à

1. Grothendieck est né en 1928 alors que je suis né trente ans plus tard.

2. Chamorro [2, p. 224] définit une grandeur mesurable comme une structure de monoïde commutatif archimédien alors qu’en France

les définitions de Perrin [3], Chevallard & Bosch [4], DGESCO [5] sont différentes.

3. Cette réflexion prend appui sur un atelier animé aux journées de Jonzac dont le titre était : « Grandeurs et mesures : où se

cache le sens ? » Il s’agissait d’un clin d’œil au thème des journées : « Où se cachent les mathématiques ? »

4. Le but de l’article n’est pas de proposer ces adaptations : nous nous contenterons de citer quelques ressources.

5. Extrait de la note figurant dans la brochure : « Dans ce qui suit, nous ne considérons que des segments fermés ; mais cela est

sans incidence sur notre propos car les quatre segments ayant les mêmes extrémités A et B (à savoir [AB], ]AB[, [AB[ et ]AB]) ont
aussi la même longueur ».
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Quel sens mathématique pour les grandeurs ?

construire le sens mathématique : « L’étude des

quatre opérations (addition, soustraction, multipli-

cation, division) commence dès le début du cycle 2

à partir de problèmes qui contribuent à leur donner

du sens, en particulier des problèmes portant sur

des grandeurs ou sur leurs mesures » [7, p. 22]. Et

réciproquement les modèles mathématiques per-

mettent de résoudre les problèmes sur les gran-

deurs, donc de les éclairer grâce au sens dumodèle

mathématique : « utiliser des outils mathématiques

pour résoudre des problèmes concrets, notamment

des problèmes portant sur des grandeurs et leurs

mesures » 6 [8, p. 23].

Un autre mathématicien [9] témoignait : « Je me

souviens très bien ; en classe de Quatrième, le

professeur avait posé un problème concernant la

roue d’un char cerclée par un forgeron. Il avait

donné toutes les dimensions, la densité du métal,

le prix du métal, etc. et il fallait calculer le prix du

cerceau. Pour moi il était clair, parce que j’avais

vu des charrons à l’œuvre, que le cerceau était

un parallélépipède rectangle qu’on repliait pour

en faire un cerceau. Par conséquent j’ai calculé

son volume de cette manière. Il est clair qu’à peu

près la totalité de la classe avait procédé en calcu-

lant la différence de volume de deux cylindres qui

limitent le cerceau. Et le professeur, qui évidem-

ment avait donné ce problème en application des

calculs de volumes de cylindres, a été amusé de

trouver une autre version et ne m’a pas pénalisé,

mais non plus félicité ». Les deux modèles 7 du

volume du cerceau métallique de la roue propo-

sés ici s’appuient sur des références distinctes :

l’un, le volume d’un parallélépipède rectangle,

est inspiré d’une expérience extra-mathématique

dans la vie réelle des charrons, l’autre, la diffé-

rence de volumes de deux cylindres, est inspiré

par un cours de mathématiques sur les cylindres.

Et chacun des modèles se justifie suivant l’ex-

périence à laquelle il se réfère, l’un ne présen-

tant pas de limite théorique liée à l’épaisseur

du métal, l’autre si. Nous allons donc interro-

ger les définitions mathématiques que nous pro-

poserons, du point de vue mathématique et du

point de vue de la situation extra-mathématique

où elles s’appliquent, sans entrer dans les spéci-

ficités de chaque grandeur, pour lesquelles nous

proposerons des références [5, 10].

La notion de grandeur

« La grandeur qui sert de modèle est la longueur,

avec sa représentation sur une droite » [3]. C’est

pourquoi nous accompagnerons ces définitions

de l’exemple de la longueur des segments semi-

ouverts [AB[ sur une droite donnée 8 en écrivant

entre parenthèses et en italique l’illustration sur

cet exemple.

Le sens mathématique : un ordre total sur

des éléments équivalents

Dans un ensemble X (ensemble des segments

semi-ouverts [AB[ sur une droite donnée 9) la no-
tion de grandeur est définie si et seulement si les

deux conditions suivantes sont vérifiées.

1. Il existe une relation d’équivalence, notée ∼, et
« 𝑥 ∼ 𝑦 » se lira « 𝑥 a même grandeur que 𝑦 »

([AB[ a même longueur que [CD[). La classe

d’équivalence de 𝑥 par cette relation, que l’on

pourra noter 10 G(𝑥), sera appelée la grandeur

de 𝑥. L’ensemble des classes d’équivalence G(𝑥)
sera noté G (dans l’exemple des segments semi-

ouverts [AB[ supportés par une même droite

donnée, si [AB[ et [A′B′[ ont même longueur,

6. Ces citations des programmes illustrent la dialectique entre sens mathématique et sens extra-mathématique présente dans ces

programmes, sans prétendre référer à toutes les occurrences de la notion de grandeur des programmes, de la maternelle au lycée. De

même nous ne nous intéressons pas au point de vue très intéressant du physicien.

7. Le modèle de la différence de deux volumes de deux cylindres a une valeur plus générale que celui du charron.

8. Nous prenons des segments semi-ouvert [AB[ sur une même droite pour éviter les problèmes de juxtapositions pratiques de

segments de directions différentes, ou le problème d’une extrémité commune entre deux segments fermés juxtaposés. L’illustration

est prise pour sa valeur inspirante et non pas problématique. De même, pour tout point A, le segment [AA[, qui est l’ensemble vide,

sera considéré sans questionnement extra-mathématique, tout comme il est considéré dans la théorie des ensembles.

9. Le segment [AA[ vide a pour longueur 0.
10. Une notation plus rigoureuse serait G∼ pour rappeler que la classe d’équivalence est attachée à la relation d’équivalence mais

pour éviter une notation trop lourde on y renoncera.
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Quel sens mathématique pour les grandeurs ?

on pourra adopter indifféremment les notations

suivantes : G([AB[) = G([A′B′[). Il est usuel de
noter AB à la place de G([AB[), et donc d’écrire
AB = A′B′).

2. Sur l’ensemble des classes d’équivalence G

pour ∼, il existe une relation d’ordre total,

notée ⩽, et « G(𝑥) ⩽ G(𝑦) » se lira « G(𝑥) est
moins grand que G(𝑦) » (AB est moins grand

que CD).

Sous ces deux conditions, on dit que sur l’en-

semble X il existe une espèce de 11 grandeur G

et chaque élément 𝑥 de X a la grandeur G(𝑥)
associée à G.

Il est courant d’étendre à X la relation d’ordre

de G et de déclarer « 𝑥 est moins grand que 𝑦 si

G(𝑥) est moins grand que G(𝑦) », ce qui consti-

tue un abus de langage parfois gênant : dire

que 𝑥 est égal à 𝑦 pour la grandeur considé-

rée si G(𝑥) = G(𝑦), alors que 𝑥 est distinct de

𝑦 comme éléments de X (par exemple, deux seg-

ments distincts d’une même droite : [AB[ et [CD[
avec A ≠ C et B ≠ D, pourront être dits égaux si

𝐺([AB[) = 𝐺([CD[)).

Ainsi l’extension à X de la relation d’ordre sur G

n’est pas une relation d’ordre sur X : il manque la

propriété d’antisymétrie. Cela amène à des ambi-

guïtés de langage inextricables, voire incorrectes :

on dit ainsi que deux segments sont égaux pour

signifier qu’ils ont même longueur, que deux sec-

teurs angulaires sont égaux pour dire qu’ils ont

même angle, tout comme on parle de cas d’égalité

des triangles pour dire qu’ils sont isométriques.

Jusqu’à présent, le sens de la notion de gran-

deur provient de sa définition mathématique, à

l’aide d’une relation d’équivalence et d’une re-

lation d’ordre. Bien entendu pour un élève de

l’école primaire, on pourra se contenter d’une

définition allégée : pour un objet 12, une gran-

deur de cet objet est une propriété de l’objet qui

permet de comparer des objets relativement à

cette grandeur, c’est-à-dire de reconnaître les ob-

jets qui sont « pareils » pour cette grandeur et de

les ranger du plus petit au plus grand. À l’école

primaire, il suffit de remplacer le mot « gran-

deur » par longueur, masse, volume, température,

date, etc. et dans l’expression « est plus grand

que » le mot « grand » par long, lourd, volumi-

neux, chaud, ancien, etc. Rouche [11] propose

une définition différente, qui tient compte du sens

extra-mathématique, et notamment des manipu-

lations, mobilisées par ou pour les élèves, mais

en les exprimant mathématiquement.

Le sens extra-mathématique : une procédure

pratique pour comparer des objets

Le sens extra-mathématique est donné par la

procédure pratique qui permet de comparer

des objets. En effet, la définition mathéma-

tique précédente est une définition formelle qui

n’indique pas comment sont définies les relations

d’équivalence et d’ordre total 13, c’est-à-dire com-

ment savoir si deux objets sont équivalents ou si

l’un est plus petit que l’autre pour la grandeur

considérée.

Pour la longueur de segments, la procédure pra-

tique consiste à distinguer deux cas. Le premier

cas envisage la comparaison directe : un des seg-

ments est inclus dans l’autre et sera défini moins

long que l’autre. Le second cas envisage la compa-

raison indirecte : il suffit de déplacer l’un des seg-

ments vérifiant le premier cas et de l’inclure dans

l’autre segment, (ou inversement) sous l’hypothèse

de conservation des longueurs par un déplacement.

Pour les aires de surfaces planes, l’inclusion d’une

surface dans l’autre permet la comparaison directe.

11. Dans le langage courant on utilise souvent le même terme pour désigner la grandeur et l’espèce de grandeur. Par exemple,

les termes longueur, aire, volume, masse, durée, etc. désigneront aussi bien des espèces de grandeurs de classes d’objets, que la

grandeur d’objets d’une même classe particulière.

12. Pour l’élève on remplace le terme élément de la théorie des ensembles par le terme objet qui fait référence à des éléments de

l’espace fréquenté par l’élève, ces objets pouvant être concrets (par exemple des objets physiques de l’espace familier) ou abstraits

(par exemple des figures planes étudiées à l’école).

13. Et ceci pour une raison simple : il n’y a pas de définition universelle mais une définition spécifique à chaque espèce de

grandeur.
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Quel sens mathématique pour les grandeurs ?

Le déplacement d’une surface offre dans certains

cas une possibilité de comparaison indirecte (sous

réserve de la conservation des aires par un dépla-

cement). Dans d’autres cas, le découpage et le re-

collement permettent une comparaison des aires

(sous réserve de la compatibilité des aires avec

les découpages et réunions sans chevauchement).

Ces procédures extra-mathématiques de déplace-

ment ou de découpage-recollement peuvent être

théorisées mathématiquement [3] mais ce n’est pas

l’objet de cet article.

Pour les masses, une balance de Roberval per-

met la comparaison. Pour les volumes de solides

immergeables dans un récipient, le repère des

niveaux d’eau des solides immergés permet la

comparaison.

Parmi les procédures pratiques, il y a l’estimation,

peut-être trop négligée dans l’enseignement [12],

qui mobilise des connaissances familières pour

comparer la grandeur d’un objet à la grandeur

correspondante d’un référent familier. Les pro-

grammes de l’école primaire indiquent pour le

cycle 2 : « pour comprendre les situations et va-

lider leurs résultats ils [les élèves] doivent aussi

donner du sens à ces grandeurs (estimer la lon-

gueur d’une pièce ou la distance entre deux arbres

dans la cour, juger si un livre peut être plus lourd

qu’un autre, etc.) en s’appuyant sur quelques ré-

férences qu’ils se seront construites » [7, p. 26] et

précisent au cycle 3 « estimer en prenant appui

sur des références déjà construites : longueurs

et aire d’un terrain de basket, aire d’un timbre-

poste, masse d’un trombone, masse et volume

d’une bouteille de lait, etc. » [8, p. 31].

Quand la procédure de comparaison des

grandeurs utilise un instrument : repérage

et mesurage

Il existe divers instruments de repérage : repères

pour la hauteur de crue d’une rivière, calen-

driers pour le temps chronologique, thermo-

mètres pour la température. Ils permettent de

mémoriser la comparaison entre grandeurs sans

calcul. Les instruments de mesurage, comme le

rapporteur pour l’amplitude de l’angle, le chrono-

mètre pour la durée, la balance pour la masse, etc.

vont ouvrir la voie aux calculs entre grandeurs.

Réfléchissons maintenant sur les définitions ma-

thématiques de repère ou mesure dont le repé-

rage et le mesurage sont les procédures pratiques

de détermination.
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Grandeur repérable

Le sens mathématique d’un repère

numérique : la numérisation des

grandeurs compatible avec l’ordre

Bien entendu un repérage peut ne pas recourir à

des nombres, comme des niveaux de crues ou des

calendriers (jours et mois). Dans ces exemples,

un axe orienté, sur lequel les repères seront ins-

crits, suffit à modéliser la relation d’ordre total.

Pour certaines grandeurs comme la température

et le temps chronologique, on utilise très souvent

un repère numérique. Ces repères permettront

d’effectuer certains calculs, comme la moyenne,

mais l’addition de deux valeurs numériques re-

pérées n’aura généralement pas de sens. Ainsi,

mélanger un litre d’eau à 25°C et un litre d’eau

à 35°C donne bien deux litres d’eau, mais pas à

60°C!

Proposons 14 la définition mathématique suivante

d’une espèce de grandeur repérée numérique-

ment, appelée couramment « grandeur repé-

rable ». Avec les notations précédentes, une

espèce de grandeur G est repérable si et seule-

ment s’il existe une application de l’ensemble des

grandeurs G dans ]−∞ ; +∞[ strictement crois-

sante 15 qui, à toute grandeur G(𝑥), associe un
réel noté R(G(𝑥)), appelé repère de G(𝑥) et, par
extension, repère de 𝑥. Cette application res-

pecte donc l’ordre sur les grandeurs du fait de

sa stricte croissance. Si 𝑥 a même grandeur que

𝑦, alors 𝑥 a même repère que 𝑦. Si 𝑥 est moins

grand que 𝑦, alors le repère de 𝑥 est moins grand

que le repère de 𝑦 (sur l’exemple des longueurs,

un premier repère R1 pourrait associer à AB sa

longueur en cm tandis qu’un second repère R2
pourrait lui associer sa longueur en pouce).

Cette définition ne précise pas comment les repères

sont construits. Une même espèce de grandeur

peut avoir plusieurs repères différents, comme

l’illustrent les exemples historiques des calendriers

pour la date [13] ou des degrés Celsius, Kelvin ou

Fahrenheit pour la température.

Le sens à l’école primaire et au collège

Alors que les documents officiels de l’école pri-

maire sont peu diserts sur les grandeurs repé-

rables, le guide du collège [14, p. 161] évoque en

ces termes cette notion : « Certaines grandeurs

physiques 16 ne sont pas mesurables, car l’échelle

numérique associée, pour les caractériser, dépend

du choix d’une origine (comme la température

thermométrique Celsius, la date calendaire). Dans

ce cas, ces grandeurs sont dites repérables, et on

devrait dire au quotidien “repérer une températu-

re” plutôt que “mesurer une température”. Point

de vigilance : passer de 10°C à 20°C, ce n’est

pas doubler la température, car dans l’échelle

Fahrenheit on passe de 50°F à 68°F qui n’est pas

un doublement ».

Grandeur mesurable : vers le

calcul sur les grandeurs avec

la numérisation des grandeurs

conservant l’addition et l’ordre

Le sens mathématique

L’idée est de mobiliser les nombres afin de pou-

voir communiquer à propos d’une espèce de gran-

deur, ce que l’on appelle usuellement « mesurer ».

C’était déjà le cas avec des repères. Mais, inspi-

rée par ce qui se fait pour l’espèce de grandeur

longueur, l’idée serait de définir une addition qui

permettrait de comparer plus précisément deux

grandeurs 𝑥 et 𝑦. Par exemple si 𝑥 < 𝑦, combien

de fois faut-il additionner 𝑥 à elle-même pour ob-

tenir une grandeur qui sera proche de 𝑦, ou plus

grande que 𝑦, soit 𝑦 < 𝑛𝑥. Examinons les condi-

tions suivantes inspirées de Perrin [3] que devrait

vérifier une grandeur mesurable.

14. Nous n’avons pas trouvé de définition de grandeur repérable dans les documents officiels consultés et la proposition faite ici

essaie d’être compatible avec le discours de ces documents officiels.

15. Mathématiquement, la croissance assure la conservation avec l’ordre strict et la stricte croissance assure l’injectivité.

16. Ici, il s’agit d’espèces de grandeurs physiques.
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Quel sens mathématique pour les grandeurs ?

1. G est une espèce de grandeur sur un ensemble

X, que l’on supposera non réduite à un seul

élément.

2. Sur l’addition des grandeurs :

(inspirons nous de l’exemple des longueurs

des segments semi-ouverts [AB[ supportés

par une même droite donnée (donc tous les

points sont alignés sur cette droite). Comment

définir AB + CD? Si 𝑡 est la translation en-

voyant C en B et D en un point que l’on note

D′, alors 𝑡([CD[) = [BD′[. Comme la transla-

tion conserve les longueurs, CD = BD′
. On

définira alors : AB + CD = AD′ 17).

Sur G, il existe une addition, notée +,
interne 18 (illustrée 19 sur les longueurs par

AB20 +BC = AC), associative 21 (pour les lon-

gueurs : AB + (BC + CD) = (AB + BC) + CD),

avec un élément neutre noté 0 22 (AA = 0) 23

et commutative 24 (AB + BC = CB + BA).

Sur les liens entre l’ordre et l’addition :

L’addition est compatible avec l’ordre (pour

les longueurs : si AB < CD et si BE < DF alors

AB + BE = AE, CD + DF = CF et AE < CF).

0, élément neutre de l’addition, est le plus

petit élément de G 25

3. Il existe une soustraction des grandeurs :

Si G(𝑥)<G(𝑦) alors il existe G(𝑧) tel que

G(𝑥) +G(𝑧) = G(𝑦) (pour les longueurs : si

AB < CD, on envoie par translation C en

A et D en D′ et on a alors AB < AD′
. On

prend alors 𝑧 = [BD′[ et G(𝑧) = BD′
avec

AB + BD′ = AD′ = CD).

4. Il existe une division des grandeurs par un en-

tier : étant donné G(𝑥), pour tout entier na-

turel non nul 𝑛 il existe une grandeur G(𝑦)
telle que G(𝑥) = G(𝑦) +G(𝑦) + … +G(𝑦) (𝑛 fois)

que l’on notera G(𝑥) = 𝑛G(𝑦) et on note encore

G(𝑦) = 1
𝑛G(𝑥) (pour les longueurs, ceci corres-

pond à la possibilité de sous-division d’une unité

choisie et ouvre la voie aux nombres rationnels

et à l’infiniment petit) 26.

5. Axiome d’Archimède : pour toute grandeur non

nulle G(𝑥) et pour tout autre grandeur G(𝑦), il
existe un entier naturel 𝑛 tel que G(𝑦) < 𝑛G(𝑥)
(pour les longueurs : pour AB non nul et CD non

nul, il existe un entier 𝑛 tel que CD < 𝑛AB).
Ce dernier axiome ouvre la voie à l’infiniment

grand : il n’y a pas de plus grande grandeur G(𝑦)
puisque on peut trouver 𝑛 tel que G(𝑦) < 𝑛G(𝑥) et,
comme la loi+ est interne, 𝑛G(𝑥) est une grandeur
supérieure à G(𝑦).

6. Axiome de la borne supérieure : tout sous-

ensemble majoré de G admet une borne supé-

rieure. Cet axiome ouvre la voie aux limites et va

permettre de considérer [0 ; +∞[ commemodèle

d’espèce de grandeurs mesurables.

Définition

Toute espèce de grandeur vérifiant les

conditions 1 à 6 est une espèce de grandeur

mesurable.

17. On s’assure que cette définition est indépendante des représentants choisis.

18. La somme 𝑔1 + 𝑔2 de deux grandeurs 𝑔1 et 𝑔2 est encore une grandeur. Nous n’écrivons pas les quantificateurs pour ne pas

alourdir la note de bas de page.

19. Nous n’écrivons pas les quantificateurs pour ne pas alourdir l’illustration.

20. On rappelle que AB désigne la classe d’équivalence de tous les segments de même longueur que celle de [AB[.
21. 𝑔1 + (𝑔2 + 𝑔3) = (𝑔1 + 𝑔2) + 𝑔3.
22. 𝑔1 + 0 = 0 + 𝑔1 = 𝑔1. Cet élément neutre est difficile à concevoir pratiquement : il correspond à la grandeur d’un objet diffi-

cilement représentable : le cardinal d’un ensemble vide, la longueur nulle d’un segment dont les deux extrémités sont confondues,

l’aire d’un triangle aplati, le volume d’une sphère de rayon nul, la masse nulle d’un solide inexistant.

23. Algébriquement ces conditions de loi interne, associative, avec élément neutre décrivent que (G, +) est un monoïde.

24. 𝑔1 + 𝑔2 = 𝑔2 + 𝑔1.
25. Cette condition n’était pas nécessaire dans le repérage mais est indispensable ici si on veut construire les rationnels ou les

réels positifs comme modèles des grandeurs mesurables.

26. Chamorro [2] ne retient pas cette condition 4 comme obligatoire pour sa définition de grandeur mesurable, ce qui lui permet

de récupérer le cardinal des ensembles finis comme grandeur mesurable.
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Mesure d’une grandeur

On appelle mesure de l’espèce de grandeur G

toute application 𝑚 de G dans [0 ; +∞[ 27, stric-
tement croissante (c’est-à-dire : si G(𝑥) < G(𝑦)
alors 𝑚(G(𝑥)) < 𝑚(G(𝑦))) et conservant l’addi-
tion (c’est-à-dire : si G(𝑥) + G(𝑦) = G(𝑧) alors

𝑚(G(𝑥)) + 𝑚(G(𝑦)) = 𝑚(G(𝑧))) 28.

Existence d’une mesure 𝑚 telle que

𝑚(𝑢) = 1 où 𝑢 est une grandeur non nulle

Propriétés :

a. Si 𝑢 est une grandeur non nulle de l’espèce

de grandeur mesurable G, alors il existe une

unique mesure 𝑚𝑢 pour laquelle 𝑢 est de me-

sure 1. 𝑢 est appelé unité de grandeur associée

à la mesure 𝑚𝑢.

b. L’application 𝑚𝑢 précédente est bijective 29.

c. Tout autre mesure 𝑚′ de (l’espèce de) gran-

deur G est proportionnelle à 𝑚𝑢. Si 𝑘 est le réel

positif coefficient de proportionnalité tel que

𝑚′ = 𝑘𝑚𝑢 alors l’unité 𝑢′ de 𝑚′ vérifie 𝑢′ = 1
𝑘𝑢.

Pour la démonstration, nous renvoyons le

lecteur à Bourbaki [15, p. 12-16].

Ce qu’il faut retenir c’est la bijection conservant

l’addition et l’ordre entre G et [0 ; +∞[.
[0 ; +∞[ est en quelque sorte un modèle pour

l’espèce de grandeur, c’est-à-dire que, mathé-

matiquement, on peut remplacer le traitement

d’additions, de comparaisons et de passage à

la borne supérieure sur les grandeurs par des

traitements correspondants sur les réels.

Et toutes les espèces différentes de grandeurs dif-

férentes utilisent le même système de nombres,

([0 ; +∞[, +, ⩽).

Cependant, si un même nombre réel exprime la

mesure de grandeurs d’espèces différentes (une

longueur, une aire, un volume, une durée, un écart

de température), il n’y a a priori pas de relation

de sens mathématique entre ces grandeurs. On

pourra éventuellement trouver a posteriori des re-

lations mathématiques entre espèces de grandeurs,

comme par exemple entre volume et longueur.

Lorsqu’un repère est représenté par une gradua-

tion régulière, par exemple la température ou

la date, l’écart de deux grandeurs repérables

de la même espèce peut permettre de définir

une grandeur mesurable (par exemple l’écart

de températures, ou l’écart de dates appelé

encore la durée).

Le sens extra-mathématique de l’addition

de grandeurs

Le document ressource des actuels programmes

de l’école primaire précise « La masse de deux

objets distincts réunis est égale à la somme des

masses de chacun de ces objets […]. Toutes les

grandeurs géométriques rencontrées au cycle 3

vérifient ces propriétés, on peut ajouter de la

même façon les longueurs de deux segments mis

bout à bout, les aires de deux surfaces qui ne se

recouvrent pas ou encore deux angles adjacents.

Ces opérations associées à des manipulations ou

à des tracés permettent de renforcer le sens des

grandeurs étudiées et préparent aussi les activités

de mesurage par report d’une unité […]. Ce n’est

pas le cas pour d’autres grandeurs, par exemple

pour la température : si l’on met ensemble 1L

d’eau à 20°C et 1L d’eau à 30°C, on n’obtient

pas 2L d’eau à 50°C ».

On voit dans ce propos que c’est le sens extra-

mathématique qui inspire, pour chacune des

espèces de grandeurs, avec des manipula-

tions ou des expériences, le sens de l’addition

mathématique.

Réciproquement, le sens mathématique peut ins-

pirer le sens extra-mathématique. Ainsi pour les

27. Une mesure d’une grandeur est par définition un nombre positif. On peut définir des grandeurs scalaires auxquelles pourront

être associés des nombres positifs ou négatifs, par exemple en physique la charge électrique.

28. Avec pour conséquence que 𝑚(0) = 𝑚(0 + 0) = 𝑚(0) + 𝑚(0). Comme 0 est le seul nombre réel vérifiant 𝑥 + 𝑥 = 𝑥 (il suffit

de soustraire 𝑥 de chaque côté pour le voir), on en déduit que 𝑚(0) = 0.
29. Ce résultat montre que la mesure des grandeurs mesurables n’est pas bornée (du fait de la bijection avec [0 ; +∞[ et plus
généralement du fait de l’axiome d’Archimède) alors que la mesure des espaces mesurés, comme les mesures de probabilités, peut

être bornée. De même l’addition sur les grandeurs vérifie 𝐴 + 𝐴 = 2𝐴 alors que la réunion dans une tribu vérifie 𝐴∪𝐴 = 𝐴. Il

convient donc de bien distinguer mesure des grandeurs et mesure des espaces mesurés.
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grandeurs écart de températures et durée, qui

sont des écarts de grandeurs repérables (la tem-

pérature ou la date), l’écart entre deux repères

numériques peut être représenté par un intervalle

de nombres qui nous renvoie au modèle précédent

des segments. Même des grandeurs mesurables

non géométriques, comme l’écart de température

ou la durée, peuvent être reliées à la grandeur

géométrique longueur de segment, qui nous a

servi de modèle dans notre construction.

Conclusion : le lien problématique

entre sens mathématique et sens extra-

mathématique

Le mathématicien inspiré par le monde extra-

mathématique (comme nous l’avons illustré ici

avec la longueur d’un segment) a construit

une théorie mathématique des grandeurs me-

surables, qui a permis la construction de l’en-

semble des réels [16, p. 33-40]. Mais bien vite

les développements mathématiques ont étendu

la mesure à des espaces autres que les es-

paces physiques, par exemple les espaces de

probabilités. Dans les espaces physiques, l’ex-

périence et la manipulation permettent une re-

présentation et une inspiration pour donner du

sens à l’addition et à la mesure des grandeurs.

Dans les espaces de probabilités, les représen-

tations et les expériences sont plus difficiles

que dans l’espace extra-mathématique à trois

dimensions du monde physique. Il faut souvent

modéliser pour se représenter ou expérimenter.

Par exemple, prendre au hasard dans un en-

semble continu, peut donner lieu à plusieurs in-

terprétations de mesure de probabilité, comme

l’illustre le paradoxe de Bertrand Youtube, alors que

nous avions trouvé un seul modèle de mesure

(à un facteur multiplicatif près) pour les gran-

deurs mesurables : le sens mathématique peut

être a priori contre-intuitif par rapport au sens

extra-mathématique. D’ailleurs, historiquement,

la découverte des nombres complexes ou des

géométries non euclidiennes sont parties du

développement du sens mathématique par rap-

port au sens extra-mathématique. Certes la

frontière entre les deux mondes n’est pas claire

et se déplace suivant les époques, les lieux et

les cultures. Mais le débat entre formaliste et

platonicien persiste : les mathématiques sont-

elles découvertes par l’homme dans le monde

extra-mathématique, ou sont-elles une création

de l’homme qui sert à comprendre ce monde

extra-mathématique ?

Rouche [11, p. 34-35] résume bien la problé-

matique à propos des grandeurs : « Il y a une

distance appréciable entre les grandeurs telles

qu’on les observe et les manie dans le quotidien

et les grandeurs amenées à travers une axioma-

tique […]. Cet exemple des grandeurs illustre le

fait que les mathématiques ne sont pas “dans

la nature”. On ne peut les découvrir seulement

en manipulant et en observant. Les concepts

doivent être construits dans leur technicité lo-

gique comme instrument de démonstration […].

Ceci n’implique nullement que les manipulations

et observations n’y aient pas de rôle dans la pen-

séemathématique : elles sont la source initiale des

intuitions sans lesquelles cette pensée demeurerait

immobile ».
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