4

INFORMATIQUE

Voyage au cœur de votre calculatrice ou Coordinate Rotation Digital Computer and Co.

par Bernard KOKANOSKY et Jean-Louis LAMARD, professeurs de Spéciales à Amiens

1. Fonctions trigonométriques

La première idée pour calculer $\cos\theta$ ou $\sin\theta$ est d'utiliser leur définition même, c'est-à-dire les séries entières

$$\cos\theta = \sum_{n=0}^{+\infty} (-1)^n \frac{\theta^{2n}}{(2n)!}$$
 et $\sin\theta = \sum_{n=0}^{\infty} (-1)^n \frac{\theta^{2n+1}}{(2n+1)!}$

On peut évidemment se ramener au cas où $\theta \in [0, \frac{\pi}{4}]$ et la conver-

gence est alors rapide (au pire, précision de 10^{-10} avec 13 termes). L'ennui de cette méthode est que les opérations intervenant ne sont pas des opérations "simples" pour un microprocesseur, lesquelles sont l'addition et le décalage (c'est-à-dire la multiplication par une puissance de 10).

C'est pourquoi les calculatrices utilisent un autre algorithme : le CORDIC.

1.1. Partie théorique

Il est clair qu'on peut se ramener, grâce aux formules usuelles, à la seule détermination de $tg\theta$ pour $\theta \in [0, \frac{\pi}{4}]$.

L'idée consiste à mettre en mémoire morte (R.O.M.) une suite d'angles (θ_n) dont la tangente est simple $(tg\theta_n = 10^{-n})$ et d'en déduire une nouvelle suite (α_n) tendant vers θ (donc $(tg\alpha_n)$ tend vers $tg\theta$) telle que, en outre, $tg\alpha_n$ s'obtienne à partir de $tg\alpha_{n-1}$ par des opérations "simples".

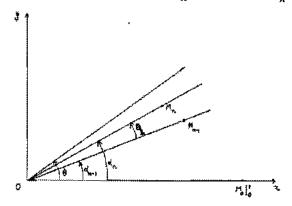
Soit donc la suite (θ_n) avec $\theta_n = \text{Arctg } 10^{-n}$. C'est clairement une suite de $[0, \frac{\pi}{4}]$, décroissante et tendant vers 0.

Définissons la suite (α_k) $(k \in \mathbb{N}^*)$ par :

$$\alpha_1 = \theta_{i_1}$$
 θ_{i_1} étant le plus grand des $\theta_j \le \theta$ (c'est-à-dire $\theta_{i_1} \le \theta < \theta_{i_1-1}$)

$$\alpha_2 = \alpha_1 + \theta_{i_2}$$
 θ_{i_2} étant le plus grand des $\theta_j \le \theta - \alpha_1$
(c'est-à-dire $\alpha_1 + \theta_{i_2} \le \theta < \alpha_1 + \theta_{i_2-1}$)

 $\begin{array}{ll} \alpha_n = \alpha_{n-1} + \theta_{i_n} & \theta_{i_n} \text{ étant le plus grand des } \theta_j \leqslant \theta - \alpha_{n-1} \\ & \text{c'est-à-dire } \alpha_{n-1} + \theta_{i_n} \leqslant \theta < \alpha_{n-1} + \theta_{i_n-1}) \end{array}$



Remarque: On notera que $(\theta_{i_n})_{n\in\mathbb{N}}$ n'est pas forcément une sous-suite de $(\theta_n)_{n\in\mathbb{N}}$ car $\theta_{i_n}=\theta_{i_{n+1}}=\ldots=\theta_{i_{n+p-1}}$ avec $p=\mathbb{E}\left(\frac{\theta-\alpha_{n-1}}{\theta_{i_n}}\right)$

avec bien sûr $\theta_{i_{n-1}} \neq \theta_{i_{n}}$. En d'autres termes c'est une suite "localement constante" dont tous les termes sont extraits de $\{\theta_{n}\}$ et non stationnaire.

Ainsi $n \mapsto i_n$ qui est évidemment croissante au sens large ne peut rester constante à partir d'un certain rang. Donc $\lim_{n \to +\infty} i_n = +\infty$.

Or par construction on a l'encadrement $\theta - \epsilon_n < \alpha_n \leqslant \theta$ avec $\epsilon_n = \theta_{i_{n+1}-1}$ et compte tenu de ce qui précède : $\epsilon_n \to 0$.

La fonction tangente étant croissante sur $[0, \frac{\pi}{4}]$, il vient :

$$tg(\theta - \mathcal{E}_n) < tg \alpha_n \leqslant tg \theta$$

ce qui fournit avec les accroissements finis :

$$\operatorname{tg}\theta - \frac{\varepsilon_n}{\cos^2 \xi_n} < \operatorname{tg}\alpha_n \leqslant \operatorname{tg}\theta \text{ avec } \xi_n \in [\theta - \varepsilon_n, \theta] \subset [0, \frac{\pi}{4}]$$

Ainsi: $tg\theta - 2\varepsilon_n < tg \alpha_n \le tg\theta$ (c'est la raison du choix de $[0, \frac{\pi}{4}]$ et non de $[0, \frac{\pi}{2}]$, sinon $\frac{1}{\cos^2 \xi_n}$ ne serait pas maîtrisé).

Conclusion: $tg \alpha_n \longrightarrow tg \theta$.

1.2. Algorithme de calcul des $tg \alpha_n$

L'intérêt du CORDIC réside dans la simplicité du passage de tg α_{n-1} à tg α_n .

Posons en effet $k_n = \operatorname{tg} \theta_{l_n} (= 10^{-l_n})$. On a alors:

$$\operatorname{tg} \alpha_n = \operatorname{tg}(\alpha_{n-1} + \theta_{i_n}) = \frac{\operatorname{tg} \alpha_{n-1} + k_n}{1 - k_n \operatorname{tg} \alpha_{n-1}}$$

Ainsi si $M_{n-1} \begin{vmatrix} x_{n-1} \\ y_{n-1} \end{vmatrix}$ est un point tel que $\frac{y_{n-1}}{x_{n-1}} = \operatorname{tg} \alpha_{n-1}$, le point

$$\mathbf{M}_n \begin{vmatrix} x_n \\ y_n \end{vmatrix} \text{ avec } x_n = x_{n-1} - k_n y_{n-1} \text{ et } y_n = k_n x_{n-1} + y_{n-1} \text{ vérifiera}$$

$$\frac{y_n}{x_n} = \operatorname{tg} \alpha_n.$$

On passe donc de M_{n-1} à M_n par la transformation de matrice: $\begin{pmatrix} 1 & -k_n \\ k_n & 1 \end{pmatrix}$, ce qui justifie la terminologie CORDIC.

Par une itération "évoluante", une suite de R2 est ainsi définie :

$$M_n \begin{vmatrix} x_n \\ y_n \end{vmatrix}$$
 avec $\frac{y_n}{x_n} = \operatorname{tg} \alpha_n$

pourvu que $M_1 \begin{vmatrix} x_1 \\ y_1 \end{vmatrix}$ vérifie $\frac{y_1}{x_1} = \operatorname{tg} \alpha_1 = \operatorname{tg} \theta_{i_1} = k_1$

On constate alors qu'en partant de $M_0 \begin{vmatrix} 1 \\ 0 \end{vmatrix}$, l'"itération" donne bien M_1 . Ce qui permet d'avoir toujours le même point de départ M_0 quel quesoit θ .

1.3. Partie pratique

Pour des raisons matérielles évidentes(!) la machine ne connaît que les N_0 premiers termes de la suite θ_n :

$$\theta_1$$
 = Arctg 0,1 = 0,099 668 652 4
 θ_2 = Arctg 10^{-2} = 0,009 999 666 7
 θ_3 = Arctg 10^{-3} = 0,000 999 999 6
 θ_4 = Arctg 10^{-4} = 10^{-4}
...
 θ_{N_0} = Arctg 10^{-N_0} = 10^{-N_0} .

La machine s'arrête lorsqu'il n'est plus possible d'ajouter θ_{N_0} au dernier α_n obtenu (qu'on notera α_N) sans dépasser θ .

Ainsi
$$\operatorname{tg} \alpha_{N} = \frac{y_{N}}{x_{N}}$$
 vérifie:
 $(\operatorname{tg} \theta) - 2 \times 10^{-N_{0}} < \operatorname{tg} \alpha_{N} \leqslant \operatorname{tg} \theta$.

(En général N₀ = 14 et le nombre "d'itérations" N est de l'ordre de 40. La convergence n'est pas très "rapide" mathématiquement, c'est-à-dire vis-à-vis de N, mais, les opérations étant "simples", le temps de calcul est très bref).

Exemple: Début des calculs pour tg 0,35.

n	θ _{in}	kn	άn	X _H	y _n	$\lg \alpha_n = \frac{y_n}{x_n}$
0				1	O	0
1	0,099 668 653	0, i	0,099 668 653	ı	0,1	0,1
2	0,099 668 653	0,1	0,199 337 306	0,99	0,2	0,202 820 202
3	0,099 668 653	0,1	0,299 005 959	0,97	0,299	0,308 247 423
4	0,009 999 667	10-2	0,309 005 626	0,967 010	0,308 7	0,319 231 445
5	0,009 999 667	10 ⁻²	0,319 005 293	0,963 923	0,318 370 1	0,330 285 822
•••						
12	0,000 1	10~4	0,349 404 294	0,953 944 105	0,347 572 928	0,364 353 557
13	0,000 1	10-4	0,349 504 294	0,953 909 347	0,347 668 322	0,364 466 837

La valeur "exacte" est: 0,365 028 ...

On a donc au rang 13 une précision de l'ordre de 6×10⁻⁴.

1.4. Remarque: C.O.R.D.I.C. = pseudo-division

On notera la parenté de cet algorithme avec celui de la division de $a \in \mathbb{N}$ par $b \in \mathbb{N}^*$.

Soit $(b_n)_{n \in \mathbb{N}}$ avec $b_n = b \times 10^{-n}$. On construit la suite (a_n) avec:

$$a_1 = a - b_{i_1}$$
 b_{i_1} étant le plus grand des $b_j \le a$ $a_2 = a_1 - b_{i_2}$ b_{i_2} étant le plus grand des $b_j \le a_1$ etc.

Exemple: Division de 14 par 3: On retranche $b_{i_1}=3$, $b_{i_2}=3$, $b_{i_3}=3$, $b_{i_4}=3$, $b_{i_4}=0$,3 (ce qui "à la main" se traduit par l'abaissement d'un zéro au dividende), etc.

2. Fonction logarithme

2.1. Séries

Il existe de nombreuses méthodes de calcul de Log X basées sur un développement en série entière. Signalons en particulier le procédé suivant :

En posant
$$x = \frac{X-1}{X+1}$$
, il vient $\log X = \log \frac{1+x}{1-x} = 2 \operatorname{Argth} x = 2 \sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1}$

(car |x| < 1 pour tout $X \in \mathbb{R}^{**}$).

Or, par division ou multiplication par des puissances de 2, il est toujours possible de se ramener à $X \in [\frac{1}{2}, 2]$ (la machine devra alors "connaître" Log 2), ce qui entraîne $|x| \le \frac{1}{3}$. De ce fait la convergence de la série sera rapide:

$$|R_n| = |2\sum_{n+1}^{\infty} \frac{x^{2p+1}}{2p+1}| < \frac{2}{3(2n+3)}\sum_{n+1}^{\infty} \frac{1}{9^p} = \frac{1}{12(2n+3)9^n}$$

Mais, comme pour le développement du sinus dans $[0, \frac{\pi}{4}]$, si la convergence est rapide, les opérations ne sont pas des opérations "simples".

2.2. Partie théorique

Par multiplication par une puissance de 10, on se ramène au calcul de Log X avec $X \in [1, 10]$ (la machine "connaîtra" Log 10).

L'idée consiste à mettre en mémoire morte les logarithmes d'une suite (a_n) et d'en déduire une nouvelle suite (A_n) convergeant vers Log X, telle que, en outre, A_n s'obtienne à partir de A_{n-1} par des opérations "simples" (en l'occurrence ici une simple addition!).

Soit donc la suite (a_n) avec $a_n = 1 + 10^{-n}$ dont la machine connaîtra les logarithmes. Définissons une nouvelle suite (X_n) par :

$$X_1 = a_{i_1}X$$
 a_{i_1} étant le plus grand des a_i tels que $a_iX \le 10$ c'est-à-dire $a_{i_1}X \le 10 < a_{i_2-1}X$

$$X_2 = a_{i_2}X_1$$
 a_{i_2} étant le plus grand des a_j tels que $a_jX_1 \le 10$ c'est-à-dire $a_{i_2}X_1 \le 10 < a_{i_2-1}X_1$

...

$$X_n = a_{i_n} X_{n-1}$$
 a_{i_n} étant le plus grand des a_j tels que $a_j X_{n-1} \le 10$
c'est-à-dire $a_{i_n} X_{n-1} \le 10 < a_{i_n-1} X_{n-1}$

Comme dans le cas de la tangente, la suite $(a_{in})_{n \in \mathbb{N}^*}$ n'est pas forcément une sous-suite de (a_n) , mais elle ne peut rester stationnaire à partir d'un certain rang et tend donc en décroissant vers 1.

Comme:
$$\frac{10}{a_{i_{n+1}-1}} < X_n \le \frac{10}{a_{i_{n+1}}}$$
 (1), la suite (X_n) tend vers 10.

Par ailleurs
$$X_n = a_{i_n} a_{i_{n-1}} \dots a_{i_1} X$$
; donc en posant :
 $A_n = \text{Log } 10 - (\text{Log } a_{i_1} + \dots + \text{Log } a_{i_n})$

on obtient une suite (A_n) tendant vers Log X et telle que $A_n = A_{n-1} - \text{Log } a_{i_n}$.

2.3. Partie pratique

La machine connaît les N_0 premiers termes de la suite (Log a_n).

Eile s'arrête lorsqu'il n'est plus possible de multiplier par a_{N_0} le dernier X_n obtenu sans dépasser 10, c'est-à-dire pour X_N tel que $a_{N_0}X_N > 10$ (2).

Montrons que, quitte à ajouter un terme de correction à A_N , on peut se contenter de $N_0=4$, ce qui prouve que cet algorithme est remarquablement "économique" (il suffit que la machine connaisse 5 logarithmes ou plutôt 6 avec Log 10 !). C'est là que réside son intérêt avec bien sûr l'utilisation d'opérations simples.

Nous avons $A_N = \text{Log } 10 - \text{Log} \frac{X_N}{Y}$

d'où $A_N - Log X = -Log \frac{X_N}{10}$

soit, classiquement:

$$A_N - Log X = -Log(1 - \varepsilon_N)$$
 avec $\varepsilon_N = 1 - \frac{X_N}{10}$

La formule de Taylor-Lagrange nous donne :

$$A_N - \text{Log} X = \varepsilon_N + \frac{\varepsilon_N^2}{2} + \frac{\varepsilon_N^3}{3} \frac{1}{(1 - \varepsilon_N)^3} \quad \text{avec} \quad c_N \in \left] 0, \varepsilon_N \right[$$

Or, clairement, $X_n \le 10$ $(V_n \in N)$ et en outre $X_N > \frac{10}{a_{N_0}}$ (ces 2 inégalités découlant respectivement de (1) et (2)).

D'où
$$\varepsilon_N \in \left]0;1-\frac{1}{a_{N_0}}\right[$$
 et a fortiori c_N est dans le même intervalle.

Ainsi
$$\frac{\varepsilon_N^3}{3} - \frac{1}{(1-c_N)^3} < \frac{1}{3} \left(1 - \frac{1}{a_{N_0}}\right)^3 - \frac{1}{\left(\frac{1}{a_{N_0}}\right)^3} = \frac{1}{3} 10^{-3N_0}$$

$$(\operatorname{car} a_{N_0} = 1 + 10^{-N_0})$$

Ainsi pour
$$N_0 = 4$$
:

$$A_N - \varepsilon_N - \frac{1}{2} \varepsilon_N^2 \in \left[Log X, Log X + \frac{1}{3} 10^{-12} \right]$$

(On notera l'existence d'une seule opération non simple pour le calcul de $\frac{\mathcal{E}_{N}^{2}}{2}$)

Exemple:

La machine connaît
$$Log 10 = 2,302 585 093$$

 $Log 2 = 0,693 147 181$
 $Log 1,1 = 0,095 310 179$
 $Log 1,01 = 0,009 950 331$
 $Log 1,001 = 0,000 999 500$
 $Log 1,0001 = 0,000 099 995$

Soit à calculer Log 44,501 = Log 10 + Log 4,4501 = Log 10 + Log X

n	a _{in}	X _n	Log <i>a_{in}</i>	An	
0	2	4,450 1	D 602 147 101	2,302 585 093 (= Log 10)	
1 2	1,1	8,900 2 9,790 22	0,693 147 181 0,095 310 179	1,609 437 912 1,514 127 733	
3	1,01 1.01	9,888 122 2 9,987 003 422	0,009 950 331 0,009 950 331	1,504 177 402 1,494 227 071	
5	1,001	9,996 990 425	0,000 999 500	1,493 227 571	
6	1,000 1 1.000 1		0,000 099 995	1,493 127 576 1,493 027 581	
8		9,999 989 822	0,000 099 995	1,492 927 586	

Terme d'ajustement :
$$-\varepsilon_8 - \frac{1}{2}\varepsilon_8^2$$
 avec $\varepsilon_8 = 1 - \frac{X_8}{10} = 0,000 001 018$ d'où $-\varepsilon_8 - \frac{1}{2}\varepsilon_8^2 = -0,000 001 018$.

Donc Log 4,450 1 \simeq 1,492 927 586 - 0,000 001 018 \simeq 1,492 926 568 d'où Log 44,501 \simeq 3,795 511 661 ce qui est la valeur fournie à l'affichage par la touche LOG.

3/Fonction exponentielle

3.1. Partie théorique

Là encore, l'algorithme utilisé par les calculatrices n'est pas basé sur la série entière $e^x = \sum_{n=1}^{\infty} \frac{x^n}{n!}$

En pratique, on se ramène au calcul de e^x avec x>0 puis à celui de e^x avec $0 \le X < \text{Log } 10$ $(x=p \text{ Log } 10 + X, d'où <math>e^x = 10^p e^X$; opération "simple").

On considère la même suite (a_n) que précédemment et on forme la suite (Y_n) :

$$Y_1 = X - \text{Log } a_{i_1}$$
 a_{i_1} étant le plus grand des a_j tels que $\text{Log } a_j \leqslant X$...

$$Y_n = Y_{n-1} - \text{Log } a_{i_n}$$
 a_{i_n} étant le plus grand des a_j tels que $\text{Log } a_j \leqslant Y_{n-1}$ soit : $\text{Log } a_{i_n} \leqslant Y_{n-1} < \text{Log } a_{i_n-1}$

D'où
$$a_{i_{n+1}} \leqslant e^{Y_n} < a_{i_{n+1}-1}$$
, ce qui prouve que $Y_n \rightarrow 0$.

Or, clairement,
$$e^{Y_n} = \frac{e^X}{a_{i_1}a_{i_2}\dots a_{i_n}},$$

donc
$$B_n = a_{i_1}a_{i_2}\dots a_{i_n} \text{ tend vers } e^X$$
 (et $B_{n+1} = B_n \times a_{i_{n+1}} = B_n + 10^{-(i_{n+1})} B_n$: opération "simple").

3.2. Partie pratique

La machine s'arrête lorsqu'il n'est plus possible de retrancher $Log a_{N_0}$ au dernier Y_n obtenu (noté Y_N) sans obtenir un résultat négatif (donc $0 < Y_N < Log a_{N_0}$).

Montrons que, comme pour le Log, avec un terme correctif on peut se contenter de $N_0=4$. En effet :

$$e^{X} - B_{N} = B_{N}(e^{Y_{N}} - 1) = B_{N}\left(Y_{N} + \frac{Y_{N}^{2}}{2}\right) + B_{N}\frac{Y_{N}^{3}}{6}e^{c_{N}}$$

avec
$$c_N \in]0, Y_N[$$

Or
$$*Y_N^3 < (\text{Log} a_{N_0})^3$$

 $*e^{c_N} < e^{Y_N} < a_{N_0}$

*De
$$Y_N \ge 0$$
, on tire $e^{Y_N} \ge 1$; donc $B_N = \frac{e^X}{e^{Y_N}} \le e^X < 10$, puisque $X \in [0, \text{ Log } 10[$.

Ainsi:
$$0 < B_N - \frac{Y_N^3}{6} e^{c_N} < \frac{5}{3} a_{N_0} (Log(a_{N_0}))^{3} < 1.7 \times 10^{-12}$$

avec $N_0 = 4$

Finalement:

$$B_N\left(1+Y_N+\frac{Y_N^2}{2}\right)\in]e^X-1,7\times 10^{-12}, e^X[$$

Exemple : e0,212

n 0	Log a _{in}	Y _n	a _{in}	\mathbf{B}_n	
		0.212		1	
1	0.095 310 179	0,116 689 820	1,1	1.1	
2	0.095 310 179	0.021 379 640	1.1	1.21	
3	0,009 950 331	0.011 429 310	1,01	1,222 1	
4	0,009 950 331	0.001 478 979	1,01	1,234 321	
5	0,000 999 500	0,000 479 478	1,001	1,235 555 321	
6	0,000 099 995	0,000 379 483	1,000	11,235 678 877	
7	0,000 099 995	0,000 279 488		11,235 802 445	
8	0,000 099 995	0,000 179 493		11,235 926 025	
9	0,000 099 995	0,000 079 498		11,236 049 618	

Terme d'ajustement:
$$\left(B_9 \ Y_9 + \frac{Y_9^2}{2}\right) = 0,000\,098\,267$$

D'où $e^{0.212} \approx 1.236\,049\,618 + 0.000\,098\,267 = 1.236\,147\,885$ ce qui est la valeur fournie à l'affichage par la touche EXP.

Remarque: Dans le tableau, nous n'avons indiqué que 9 chiffres, mais en fait les calculs ont été effectués avec 11 chiffres.

Bibliographie

- J.E. Volder "The Cordic Trigonometric Computing Technique"
 L'Ordinateur Individuel n° 24 (février 1981)
- E.G. Kogbetzianz "Mathematical Methods for digital computers" 1960 Wiley, Ruston, Wilf).