1 ETUDES

Une caractérisation simple des isométries

Par Robert CABANE, Lycée Carnot, Paris

Le but de cet article est de montrer que l'on peut affaiblir considérablement la définition des isométries affines de \mathbb{R}^n dans lui-même. L'idée est qu'une application de \mathbb{R}^n dans lui-même est isométrique sitôt qu'elle "préserve la distance 1". Cette propriété était déjà connue pour n=2 ([1]), quoiqu'avec une démonstration plus compliquée ; je pense que la preuve générale est nouvelle. Le lecteur pourra trouver des détails sur les outils employés ici dans [2] et [3].

Notations. • Ω désigne l'espace affine euclidien Rn.

- Dans ce qui suit, f désigne une application de Ω dans luimême, sauf exception. Pour deux points M et P de Ω , leur distance sera notée MP. On désignera f(M) par M'. Nous dirons que $\ell \geqslant 0$ est "préservé" par f si, pour tous M et P de Ω tels que : $MP = \ell$, on $\alpha : M'P' = \ell$. Et Δ désigne l'ensemble des "distances préservées par f".
- Un "simplexe" de Ω est une figure formée de n+1 points affinement indépendants : $\{A_0, \ldots, A_n\}$. Un "simplexe régulier de côté 1" est un simplexe $\{A_0, \ldots, A_n\}$ tel que pour tous i et j distincts on ait : $A_iA_j=1$. L'hyperplan affine engendré par n points B_1, \ldots, B_n affinement indépendants sera noté : $H(B_1, \ldots, B_n)$. La "hauteur issue de A_0 " du simplexe $\{A_0, \ldots, A_n\}$ est la distance de A_0 à l'hyperplan-face opposé (soit $H(A_1, \ldots, A_n)$). Son "centre" G est le barycentre de A_0, \ldots, A_n affectés de coefficients 1.

Nous établissons d'abord le lien entre la "préservation des distances" et les isométries. Le théorème suivant est connu ([2] tome 1 p. 434).

Théorème 1. Soit Γ un ouvert de Ω , et $f: \Gamma - \Omega$, préservant les distances. Alors f est la restriction à Γ d'une isométrie affine.

En voici une preuve dans le style de ce qui suit : Choisissons un simplexe régulier $[A_0,...,A_n]$ dans Γ ; f le transforme en un simplexe isométrique $\{A_0,...,A_n\}$. Soit g l'isométrie affine qui coı̈ncide avec f sur $[A_0,...,A_n]$. On a, pour tout $M: A_iM = A_i'M' = A_i'g(M)$ puisque g et f préservent les distances. Cela implique :

$$A_0'M'^2 - A_0'g(M)^2 - A_0'M'^2 + A_0'g(M)^2 = 2A_0'A_0' \cdot g(M)M' = 0.$$

Comme les vecteurs $A_0 A_1$ sont indépendants, g(M)M' est orthogonal au sous-espace affine engendré par $[A_0,...,A_n]$, soit Ω . Donc : g(M) = M', et : f = g.

Nous allons à présent supposer : $\Gamma = \Omega$, et prouver que deux cas seulement peuvent se présenter : $\triangle = \{0\}$ ou $\triangle = \mathbb{R}^*$. Pour cela, nous supposerons que \triangle n'est pas réduit à $\{0\}$, et construirons des "figures rigides" préservées par f (par exemple : triangles, simplexes, losanges...)

Théorème 2. Si \triangle n'est pas $\{0\}$, alors f est une isométrie affine.

Nous donnerons la démonstration de ce théorème un peu plus loin ; en attendant, il est intéressant de voir comment on peut procéder dans le cas n=2.

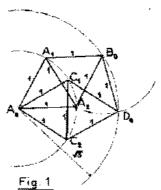
Lemme 1. On peut supposer que \(\triangle \) contient 1.

Il suffit de remplacer f par $g = h_0 f_0 h^{-1}$, h étant une homothètie de rapport k, si k appartient à \triangle .

Lemme 2. \triangle contient $\sqrt{3}$.

Preuve: Soient A₀ et B₀ tels que: $A_0B_0 = \sqrt{3}$.

Nous pouvons construire un losange A₀A₁B₀A₂ (figure 1).



Associons-lui le losange $A_0C_1D_0C_2$ de sorte que : $B_0D_0=1$. La figure obtenue est rigide, c'est-à-dire que f y opère globalement comme une isomètrie. En effet, on ne peut avoir : $A_0'=B_0'$, car la distance B_0D_0 serait transformée en 0 ou $\sqrt{3}$ selon les "pliages" éventuels. Les losanges considérés sont donc bien préservés.

Lemme 3. △ contient les nombres entiers naturels.

Preuve: Considérant d'abord A et B à distance 2, nous prouvons que 2 appartient à \triangle par la figure {A,B,C,D,E} formée de deux losanges: voir la figure 2. D'après le lemme 2, chaque losange est transformé isométriquement par f; donc {A,B,C,D,E} et [A',B',C',D',E'] sont isométriques.

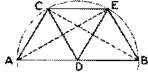
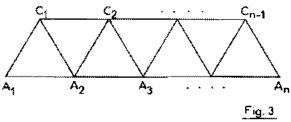


Fig. 2

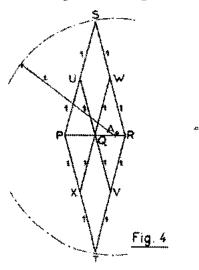
Ainsi: AB = A'B' = 2.

On généralise aisément à toute distance entière en juxtaposant des triangles équilatéraux (figure 3).



Lemme 4, 1/2 appartient à \triangle .

Preuve: Soient P et Q à distance 1/2. Nous construisons la figure [P,Q,...,W,X] formée de losanges : voir la figure 4. Comme \(\triangle \) contient 1



et 2, on ne peut avoir : S' = T' car alors on aurait aussi : V' = W' ; U' = X', d'où : U'V' = U'W' = 2 = 1/2, exclu.

Donc: P'Q' = PQ = 1/2, ce qui démontre le lemme.

Preuve du théorème (n=2): On montre, comme au lemme 1, que \triangle est stable par multiplication par les entiers et 1/2. Il contient donc les dyadiques, dont on sait qu'ils sont denses dans \mathbb{R}^* . Soient alors A et B appartenant à Ω , k_n et ℓ_n deux éléments de \triangle tels que :

$$\lim_{n \to \infty} \ell_n = 0 ; AB - \ell_n < k_n < AB \text{ pour tout } n \le 0.$$

Comme les inégalités triangulaires sont vérifiées, il existe C_n appartenant à Ω , tel que :

$$AC_n = k_n$$
 et $C_nB = \ell_n$ (figure 5)

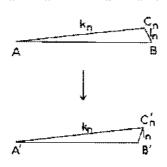


Fig 5

On obtient alors : $A'C'_n = k_n$ et $C'_nB' = \ell_n$. L'inégalité triangulaire implique :

$$k_n - \ell_n \leq \mathbf{A}' \mathbf{B}' \leq k_n + \ell_n$$

soit, à la limite : AB = A'B'. Le théorème 1, pour $\Gamma = \Omega$, donne le résultat cherché.

Nous revenons à présent au cas général : n>2, en supposant toujours que 1 appartient à \triangle . Soient h_n la hauteur d'un simplexe régulier de côté 1 $\{A_0, ..., A_n\}$, et r_n son rayon, égal à A_0G par exemple.

Lemme 5.
$$h_n = \sqrt{\frac{n+1}{2n}}$$
; $r_n = \sqrt{\frac{n}{2n+2}}$

Ceci se prouve par récurrence sur n. Pour n = 1, on a deux points et

$$h_1 = 1$$
 et $r_1 = 1/2$. Supposant : $h_{n-1} = \sqrt{\frac{n}{2(n-1)}} = \frac{n}{n-1}$ r_{n-1} , nous considérons un simplexe $\{A_0, ..., A_n\}$ et K la projection orthogonale

824

de A_n sur $H(A_1,...,A_n)$. Le théorème de Pythagore donne :

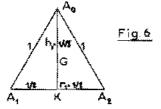
$$h_n^2 + r_{n-1}^2 = 1 \; ,$$

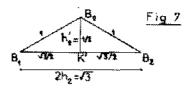
puisque : $h_n = A_0 K$. Ceci entraîne :

$$h_n^2 + \left(\frac{n-1}{n}\right)^2 h_{n-1}^2 = 1$$
, d'où: $h_n = \sqrt{\frac{n+1}{2n}}$.

De plus, G est barycentre de $A_0(1)$ et K(n), soit :

$$r_n = GA_0 = n GK = \frac{n}{n+1} KA_0 = \frac{n}{n+1} h_n = \sqrt{\frac{n}{2n+2}}$$





Lemme 6. Il existe un simplexe $[B_0, ..., B_n]$ tel que, pour tous i > j > 0 on ait: $B_0B_i = 1$ et: $B_iB_j = 2h_n$. Si K' est la projection orthogonale de B_0 sur $H(B_1, ..., B_n)$, alors la hauteur issue de B_0 vaut: $B_0K' = h'_n = 1/n$.

Pour cela, nous considérons un simplexe régulier de dimension n-1, de côté $2h_n$, soit : $[B_1, ..., B_n]$, et son centre K'. Alors B_1 K' vaut : $2h_{n'n-1}$, grâce au lemme 5, soit : $\sqrt{1-\frac{1}{n^2}} < 1$. Il existe donc B_8 sur la droite orthogonale en K' à $H(B_1, ..., B_n)$, tel que : $B_0B_1 = 1 > K'B_1$. Par symétrie, on aura de même : $B_0B_1 = 1$ (i>0). Enfin, par Pythagore

$$B_0K'^2 + K'B_1^2 = 1 = h_{n}'^2 + (2h_nr_{n-1})^2 = h_{n}'^2 + 1 - \frac{1}{n^2}$$
; d'où le lemme.

Lemme 7. \triangle contient $2h_n$ et $2h'_n$.

nous obtenons:

Preuve: Soient A_0 et B_0 tels que: $A_0B_0 = 2h_n$. L'intersection de l'hyperplan médiateur de A_0B_0 et de la sphère de centre A_0 , rayon 1, donne une sphère de dimension n-1, formée des points à distance 1 de A_0 et B_0 . Dans cette dernière nous inscrivons un simplexe régulier de dimension n-1: $\{A_1, \ldots, A_n\}$. Il est de côté 1 car son rayon vaut, par Pythagore: $\sqrt{1-h_n^2}=r_{n-1}$. Ainsi $\{A_0,A_1,\ldots,A_n\}$ et $\{B_0,A_1,\ldots,A_n\}$ sont des simplexes réguliers de côté 1 (opposés par une face).

La sphère de centre A_0 , rayon $2h_n$, et celle de centre B_0 , rayon 1, se coupent, car B_0 est sur la première, et $4h_n$, diamètre de celle-ci, est supérieur à 1. Choisissons donc un point D_0 quelconque, commun à ces deux sphères. Construisons enfin $[C_1, \ldots, C_n]$ dans l'hyperplan médiateur de A_0D_0 , comme $\{A_1, \ldots, A_n\}$ précédemment (voir la figure 1).

Prouvons que $[A_0,...,A_n,B_0]$ et $[A'_0,...,A'_n,B'_0]$ sont isométriques. C'est déjà le cas pour les simplexes en présence. Il se pourrait que A'_0 et B'_0 coïncident. Mais dans ce cas l'on aurait : $B'_0D'_0 = A'_0D'_0 = 0$ ou $2h_n$ selon que A'_0 et D'_0 coïncident ou non. Ceci contredit l'hypothèse : $B'_0D'_0 = 1$. Donc f agit comme une isométrie sur $[A_0,...,A_n,B_0]$ et on a : $A'_0B'_0 = A_0B_0 = 2h_n$. Ainsi, $2h_n$ appartient à \triangle .

Pour $2h'_n$ on peut suivre le même raisonnement avec des simplexes analogues à ceux du lemme 6, "opposés par la base". On aura alors : $A_0A_i = B_0A_i = A_0C_i = D_0C_i = 1$, et $A_iA_j = C_iC_j = 2h_n$. Puisque $2h_n$ appartient à Δ , f agit sur $\{A_0, A_1, \ldots, A_n, B_0\}$ comme une isométrie, à condition que A_0D_0 ne vaille pas 1. C'est le cas pour n > 2 car alors : $2h'_n \neq 1$.

Lemme 8. △ est dense dans R*.

Preuve: Nous appliquons les méthodes des lemmes 6 et 7 à : $g = h^{-1} f_0 h$, où h est une homothétie de rapport $2h_n$. Comme $2h_n$ appartient à \triangle , g préserve la distance 1, donc aussi $2h_n$ et $2h'_n$. Mais alors $f = h_0 g_0 h^{-1}$ préservera $(2h_n)^2$ et $(2h_n)(2h'_n)$. Plus généralement, une récurrence simple prouve que \triangle contient tous les : $(2h_n)^p (2h'_n)^q$ pour p et q entiers naturels.

Ainsi, $Log\triangle$ contient les : $p.Log2h_n + q.Log2h'_n$. Le lemme résultera du théorème de Kronecker ([4] p. 373) qui affirme que : si z/y est irrationnel négatif, alors : $\{py + qz / p \in \mathbb{N}, q \in \mathbb{N}\}$ est dense dans \mathbb{R} . Or, si l'on avait :

$$\frac{\text{Log}2h_n'}{\text{Log}2h_n} = -\frac{a}{b} \text{ (a et } b \text{ entiers)}$$

cela impliquerait :

ce qui est absurde, car n+1 ne divise pas n, et a n'est pas nul pour $n \neq 2$.

Preuve du théorème 2 : \triangle est à nouveau dense dans R⁺, et on conclut comme précédemment.

Il est possible de donner diverses généralisations du théorème 2.

Théorème 3. Soit $f: \Omega \to \Omega$ telle qu'il existe k et k', et que : MP = k entraîne M'P' = k'; alors f est une similitude de rapport k'/k.

Ce qui se démontre comme le lemme 1, avec des homothéties.

Théorème 4. Soit Γ un ouvert connexe de $\Omega = \mathbb{R}^2$, de rayon r (c'est la borne supérieure des rayons des boules incluses dans Γ), et $f: \Gamma \to \Omega$ qui préserve la distance f. Si on a : r > 2f, alors f est la restriction d'une isométrie à Γ .

Preuve: Nous supposons d'abord f = 1. Il faut reprendre la démonstration du théorème 2 dans le cas n=2, avec des distances dyadiques. Cependant, il faut veiller à ce que les constructions nécessaires ne "sortent" pas de Γ . Nous prouverons que f est isométrique dans un disque inclus dans Γ , puis étendrons cette propriété de proche en proche à Γ .

Supposant : r > 2, nous pouvons considérer un disque fermé Σ de rayon 2, inclus dans Γ .

Lemme 9. Soit $\{A_0,A_1,A_2,B_0\}$ un losange de côté 1 inclus dans Σ , donc tel que :

$$A_0A_1 = A_0A_2 = A_1A_2 = B_0A_1 = B_0A_2 = 1.$$

Alors f est isométrique sur ce losange.

Preuve: Il suffit de construire la figure $\{A_0, A_1, A_2, C_1, C_2, B_0, D_0\}$ (figure I) sans sortir de Σ . Or, $\{A_0, C_1, C_2, D_0\}$ provient du losange initial par une rotation d'angle \pm Arcsin $\frac{1}{2\sqrt{3}} = a$, et de centre A_0 . Les

points de Σ à distance 1 de A_0 forment un arc de cercle d'angle au moins 2b = 2 Arccos $\frac{1}{4}$ (valeur limite qui correspond au cas où A_0 est sur le

bord de Σ). On peut donc tourner le triangle $A_0A_1A_2$ autour de A_0 d'un angle \pm $(b-\pi/6)$ sans sortir de Σ . Comme on $a:a< b-\pi/6$, il est possible de construire C_1 et C_2 . La construction de D_0 se fait de même, en remplaçant b par $\pi/3$.

Lemme 10. Pour A et B appartenant à Σ , AB = 2 implique : A'B' = 2.

Preuve: Analogue à celle du lemme 3 (figure 2). Le cercle de centre D, milieu de AB, et de rayon I, donne au moins un demi-cercle d'extrémités A et B inclus dans Σ . Nous y choisissons C et E pour obtenir des losanges [A,C,D,E] et [B,D,C,E] auxquels le lemme 9 s'applique pour donner le résultat.

Soient à présent Σ' et Σ'' deux disques ouverts inclus dans Γ , de centre K, rayons r' < 1/4 et r'' = r' + 2.

Lemme 11. Si P et R appartiennent à Σ'' , et vérifient : PR = P'R', et si le segment [PR] intersecte Σ' , alors f est isométrique sur (P,Q,R), où Q est le milieu de [PR].

Preuve: Si A_0 appartient à [PR] et Σ' , les points P,Q,...,X sont tous dans le disque Σ de centre A_0 , rayon 2 (figure 4). Le raisonnement du lemme 4 s'applique ici, puisque, par le lemme 10, les distances 2 sont "constructibles" dans Σ , qui est bien inclus dans Γ .

Lemme 12. Soient A_0 un élément de Σ' et B_0 tels que A_0B_0 soit dyadique et inférieur à 1/2. On a alors : $A_0B_0 = A_0B_0'$.

Preuve: Il suffit de prouver ce lemme pour les points d'une droite passant par A_0 . Nous orientons cette droite. Il faut prouver, par récurrence sur q, que f transforme isométriquement les points d'abscisse $\frac{k}{2^q}$ pour $-2^{q-1} \le k \le 2^{q-1}$.

Notons que c'est déjà le cas pour les points d'abscisse ± 1 . En effet, f préserve les distances 1 et 2, et la construction relative à la distance 2 "tient" dans le disque Σ de centre A_0 , rayon 2, donc dans Σ ", par le lemme 10.

Pour q=1, on peut appliquer le lemme 9 aux points $P=A_0$ et R d'abscisse \pm 1. Supposant que la propriété est vraie jusqu'à q, nous considérons B_0 d'abscisse $\frac{k}{2^{q+1}}$. Si on a : $2^{q-1} \le k < 2^q$, nous appliquons le lemme 11 aux points P d'abscisse : $\frac{k-2^q}{2^q} < 0$ et R d'abscisse I ; en

effet le milieu de [PR] est d'abscisse : $\frac{k-2^q+2^q}{2\times 2^q} = \frac{k}{2^{q+1}}$: c'est B₀.

Si on a : $0 \le k \le 2^{q-1}$, nous prenons de même P d'abscisse : $\frac{k-2^{q-1}}{2^q}$ et R d'abscisse $\frac{1}{2}$. Si k est négatif, on peut changer tous les signes. Ainsi, dans tous les cas f transforme isométriquement $\{P, B_0, R\}$ et $\{A_0, P, R\}$ par hypothèse ; d'où le résultat.

Lemme 13. f est isométrique dans Σ' .

Preuve: Comme pour le théorème 2, la distance de deux points A et B de Σ ' peut s'approcher par une distance préservée par f, soit k_n , ici dyadique, de même que ℓ_n . Avec n assez grand, on peut supposer que C_n appartient à Σ' . Comme k_n et ℓ_n sont nécessairement inférieurs à 1/2, le lemme 12 montre que l'on a : $AC_n = A'C'_n$ et : $C_nB = C'_nB'$; on conclut comme pour le théorème 2.

Soit alors g l'isométrie qui, par le théorème 1, coïncide avec f dans Σ' . Il faut montrer que f et g coïncident dans Γ .

Lemme 14. f est isométrique dans Σ'' .

Preuve: Les points de Σ'' situés à distance I de points de Σ' forment une couronne ou un disque de centre K, soit Λ . Les points de Λ sont à distance I de trois points au moins de Σ' ; donc f et g coıncident sur Λ .

Comme on a : r''=r'+2, un cercle centré dans $\Sigma''-\Sigma'$, de rayon 1, rencontre nécessairement Λ ; et donc tout point de $\Sigma''-\Sigma'$ est à distance 1 d'au moins trois points de Λ . Donc f et g coïncident sur Σ'' .

Preuve du théorème 4. I est connexe par arcs car connexe et ouvert.

Soient A appartenant à Σ'' et B à Γ . Il existe un chemin continu $\varphi: [0,1] \to \Gamma$ tel que : $\varphi(0) = A$ et $\varphi(1) = B$. Par compacité, $\varphi([0,1])$ possède un "voisinage tubulaire" de largeur 2e > 0, soit Φ inclus dans Γ . Soit : Σ_I le disque ouvert de centre $\varphi(I)$, rayon e. Nous avons : $\Phi = \bigcup_{0 \le I \le 1} \Sigma_I$.

Soit : $\Phi_s = \bigcup_{0 \le t \le s} \Sigma_t$, et : $c = \sup \{s/\forall Me \ \Phi_s \ f(M) = g(M)\}$, qui existe

car on peut choisir e assez petit pour que Σ_0 soit inclus dans Σ'' . Si c est inférieur à 1, il existe M appartenant à Φ , proche de Φ_c , tel que f(M) et g(M) soient différents. Supposons qu'aucun point de Φ_c ne soit à distance 1 de M. Alors on peut écrire : $\Sigma'' \cup \Phi_c = \Gamma_1 \cup \Gamma_2$, Γ_1 contenant les points à distance supérieure à 1 de M, Γ_2 les autres. Γ_1 est un ouvert non vide car Σ'' est de rayon 2 au moins, et $\Sigma'' \cup \Phi_c$ est ouvert. Γ_2 de même, par choix de M. Cela contredit la connexité de $\Sigma'' \cup \Phi_c$, qui résulte de celle de $\varphi([0,c])$. Il existe donc au moins un, et même trois, points de $\Sigma'' \cup \Phi_c$ à distance 1 de M; ainsi f(M) et g(M) sont égaux, c vaut 1 et on a : f(B) = g(B).

Par homothéties, le théorème s'en déduit.

Remarque: Notre théorème 4 ne donne pas une réponse complète, même pour les boules. En effet, si Γ est une boule de rayon r, avec $r > 2\ell$, alors f est une isométrie. Si r est inférieur ou égal à ℓ , alors le centre ne se trouve à distance ℓ d'aucun point de Γ , et peut donc être envoyé n'importe où par f. Si on a : $\ell < r \le 2\ell$, nous n'avons pas d'indication. Nous pensons cependant que le théorème 4 reste vrai dans ce cas, et que cela se transpose même à \mathbb{R}^n pour n > 2. On peut aussi se demander ce qui se passe si Γ est un ouvert de rayon assez petit, mais de grand diamètre : peut-être existe-t-il des contre-exemples dans ce cas.

Références :

- Modenov (P.S.), Parkhomenko (A.S.) Geometric transformations 1. Academic Press.
- 2. Lelong-Ferrand (J.), Arnaudiès (J.-M.) Cours de mathématiques. Dunod
- 3. Berger (M.), Géométrie. CEDIC
- 4. Hardy (G.H.), Wright (E.M.) An introduction to the theory of numbers Oxford University Press.