Un peu d'espace

par Maurice THUILIERE, lycée Chateaubriand, Rome

Une fois reconnue "l'unicité" du groupe totalement ordonné "parfait" (*) R (merci à M. Samuel pour ses articles si enrichissants et si détendus...), il est amusant de transposer certaines études classiques sur une autre facette de ce merveilleux diamant qu'est R.

^(*) Bulletin de l'A.P.M. nº 299, pages 341 à 351.

Considérons donc la version (R*, X) du groupe totalement ordonné parfait (où le neutre est 1). Pour la suite, ce groupe sera désigné par V. On définit sur V une loi externe T par

$$(\forall \alpha \in \mathbf{R}), (\forall \mathbf{x} \in \mathbf{V}), (\alpha \top \mathbf{x} = \mathbf{x}^{\alpha})$$

Un exercice bien simple permet de vérifier que (V,T) est un R-vectoriel de dimension un, dont une base est ... surtout pas 11! ! On peut alors passer à V² par une démarche classique ; quelques calculs simples (recherche du neutre $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, du symétrique d'un élément ...) permettront à des apprentis de se familiariser avec V2.

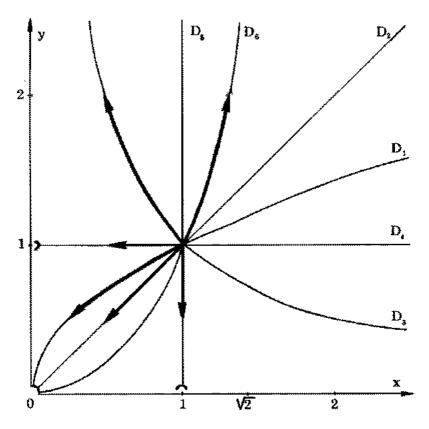
Essayons de traduire, en termes de V2, considéré dans sa structure de R-vectoriel de dimension deux, certaines notions vectorielles bien connues. Ainsi, les vecteurs $\binom{a}{h}$ et $\binom{a'}{h'}$ sont dépendants si et seulement si il existe un réel a tel que $(a' = a^{\alpha} \text{ et } b' = b^{\alpha})$, étant convenu que le vecteur $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ est dépendant de tout autre vecteur. Par exemple $\binom{1/4}{1/2}$ et $\binom{2}{\sqrt{2}}$ sont dépendants $(\alpha = -\frac{1}{2})$. De même, il est intéressant de traduire les notions de partie génératrice, de base, etc... On pourra par exemple vérifier que la recherche des composantes du vecteur (a) $(a \neq 1)$ sur la base $\mathcal{B} = \{\begin{pmatrix} a \\ \sqrt{a} \end{pmatrix}, \begin{pmatrix} a \\ a^2 \end{pmatrix}\}$ conduit à la solution (unique bien sûr) $(\frac{2}{3}, \frac{1}{3})$.

Bien entendu, il faudra parler un jour ou l'autre de logarithmes et d'exponentielles, décerner un diplôme de "base canonique" à l'un des couples de vecteurs indépendants. Sera-ce $\binom{e}{1}$, $\binom{1}{e}$ (base canonique "népérienne" de V^2)? Alors les composantes du couple $\binom{5}{2}$ seront de toute évidence (ln 5, ln 2) (logarithme népérien). Elles seraient de la même façon $(\log 5, \log 2)$ sur la base $\left\{ \begin{pmatrix} 10\\1 \end{pmatrix}, \begin{pmatrix} 1\\10 \end{pmatrix} \right\}$.

Les équations paramétriques d'une droite vectorielle de V^2 , de vecteur directeur $\binom{a}{b}$ $\binom{a}{b}\neq\binom{1}{1}$, sont $(x=a^{\lambda}$ et $y=b^{\lambda})$, λ parcourant R. L''élimination'' du paramètre λ entre les deux équations (en passant par exemple par les logarithmes népériens) fournit une équation cartésienne d'une telle droite :

$$y = x^{\frac{\text{Log b}}{\text{Log u}}} \qquad (a \neq 1)$$

Le rapport $\frac{\text{Log b}}{\text{Log a}}$, qui ne dépend évidemment pas de la base de logarithmes choisie, pourrait s'appeler le T-coefficient directeur de la droite.



Si on cherche alors à représenter l'image "euclidienne" des droites de V^2 , on est conduit à se placer dans le "quart-de-plan"

 R_* \times R_* . Dans la figure cí-dessus, on trouvera les images euclidiennes des droites vectorielles D_i ($i \in 1,2,3,4,5,6$) de vecteurs directeurs respectifs $\binom{1/4}{1/2}$, $\binom{1/2}{1/2}$, $\binom{1/2}{2}$, $\binom{1/2}{2}$, $\binom{1}{1/2}$, $\binom{1}$

Je vous souhaite d'apprécier cet espace V² (non encore pollué!), avec sa population de vecteurs bossus et ses forêts de droites biscornues, où professeurs et élèves pourront s'égailler — et même s'égayer!